The lid-driven cavity

Hendrik C. Kuhlmann and Francesco Romano

Abstract The lid-driven cavity is an important fluid mechanical system serv-
ing as a benchmark for testing numerical methods and for studying fundamen-
tal aspects of incompressible flows in confined volumes which are driven by
the tangential motion of a bounding wall. A comprehensive review is provided
of lid-driven cavity flows focusing on the evolution of the flow as the Reynolds
number is increased. Understanding the flow physics requires to consider pure
two-dimensional flows, flows which are periodic in one space direction as well
as the full three-dimensional flow. The topics treated range from the char-
acteristic singularities resulting from the discontinuous boundary conditions
over flow instabilities and their numerical treatment to the transition to chaos
in a fully confined cubical cavity. In addition, the streamline topology of two-
dimensional time-dependent and of steady three-dimensional flows are cov-
ered, as well as turbulent flow in a square and in a fully confined lid-driven
cube. Finally, an overview on various extensions of the lid-driven cavity is
given.
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1 Introduction

A rectangular or a cubic container are among the most elementary confined
geometries within which fluid motion can be studied. The simplest mechanical
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driving force acting on a viscous fluid with constant density and leaving the
simple domain intact is the tangential in-plane motion of a bounding wall. A
cuboid of which one of the solid walls moves tangentially to itself is called a
lid-driven cavity.

Owing to the simplicity of its setup the lid-driven cavity has been inves-
tigated quite extensively. It has been employed as a numerical benchmark
problem and as a test bed for studying particular physical effects. Searching
the Web of Science for the topic lid-driven yields more than 1800 hits. For
these reasons, and because of the rapid evolution of this field of research, a
review on lid-driven cavity flows seems justified, given that nearly 20 years
have passed since the overview provided by Shankar and Deshpande (2000).

After the first numerical investigations of Kawaguti (1961) and Burggraf
(1966) the quest for efficiency and accuracy began with the work of Ghia
et al. (1982) and Schreiber and Keller (1983) who computed the steady two-
dimensional flow for Reynolds number up to 10* in a square cavity bounded
by three rigid walls and a lid moving with constant velocity. Koseff and
Street carried out a series of experiments on the flow in three-dimensional
cavities with different lengths in the third dimension, many of them being
summarized in Koseff and Street (1984c). Stimulated by these experimental
results and the remaining open questions, dedicated three-dimensional test
cases have been defined and investigated numerically by different research
groups with results collected in Deville et al. (1992). After this joint effort,
which did not yield very conclusive results for the targeted Reynolds number
of Re = 3200, a new level of accuracy has been reached for two-dimensional
flows by Botella and Peyret (1998) who employed spectral methods combined
with a dedicated treatment of the singular corners/edges where the moving
wall meets with a stationary wall. Their method yields highly accurate nu-
merical solution for the two-dimensional problem up to Re = 103 (see also
Auteri et al., 2002b). With the progress in computing power and the routine
computation of three-dimensional flows, benchmarks for three-dimensional
flows became of interest. Applying the method of Botella and Peyret (1998)
to three-dimensions Albensoeder and Kuhlmann (2005) provided highly ac-
curate three-dimensional flow fields for Re = 102 for different cavity lengths
in the spanwise direction and for rigid and periodic boundary conditions at
the end walls.

Apart from serving as a numerical benchmark, many fundamental fluid
mechanical phenomena arise in the lid-driven cavity problem. An impor-
tant aspect for an analytical and numerical treatment of the problem are
the discontinuous boundary conditions along the edges at which moving and
stationary walls meet. This problem is a special case of Taylor’s scraping
problem for which he has provided similarity solutions (Taylor, 1960, 1962).
Along such an edge with discontinuous boundary conditions for the veloc-
ity perpendicular to the edge, the vorticity and the pressure diverge at the
apex. For two-dimensional flow, closed-form solutions have been obtained
(see, e.g., Gupta et al., 1981) in terms of a series expansion of the steady
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flow for small distances from the discontinuous corner. Even a truncated se-
ries expansion will capture the leading-order terms of the singular velocity
and pressure fields and can be employed to ease convergence of the full nu-
merical problem of solving the Navier—Stokes equations (Botella and Peyret,
1998). An artifice to eliminate the singularity is a regularization/smoothing
of the discontinuity (see, e.g., Leriche, 2006). The existence of a singularity
in the mathematical problem also indicates the difficulties which arise in ex-
perimental realizations of the lid-driven cavity: mathematically the pressure
diverges as the singular corners are approached. The decrease of the pres-
sure in the edge at which the wall moves away from the edge will necessarily
lead to cavitation in the corner. Furthermore, a gap between a stationary
and the moving wall is hard to prevent, leading to pumping and leakage
effects (Riedler and Schneider, 1983). Another peculiarity concerns the vis-
cous flow near the sharp corners made by two stationary walls. Depending
on the enclosed angle the flow exhibits a particular asymptotic behavior in
form of an infinite sequence of self-similar vortices (Moffatt, 1964a) whose
size and intensity decay in geometric progression as the edge is approached.
In addition to these local effects, the global vortex structures depend on the
motion of the boundaries and the height-to-width ratio of the cavity (Pan and
Acrivos, 1967), even in two-dimensional Stokes flow. The solution to these
types of problems can be obtained, apart from numerical methods, by the
bi-orthogonal series method (Joseph, 1977; Joseph and Sturges, 1978) or by
the use of Greens functions (Kelmanson and Lonsdale, 1996). The theoretical
asymptotic treatment of the three-dimensional problem of the local flow near
a corner where three plane rigid walls meet is considerably more complicated
(Gomilko et al., 2003).

Another fundamental aspect of the lid-driven cavity flow concerns the
evolution of the two-dimensional flow as the wall velocity increases. Accord-
ing to the Prandtl-Batchelor theorem (Prandtl, 1904; Batchelor, 1956) the
steady, two-dimensional flow, in the absence of instabilities, should evolve for
large Reynolds numbers to a vortex with an inviscid core of uniform vortic-
ity surrounded by viscous boundary layers which relate the vortex core to
the boundary conditions. This tendency was confirmed experimentally (Pan
and Acrivos, 1967) and numerically (see, e.g., Erturk et al., 2005). How-
ever, the two-dimensional steady flow is not stable at high Reynolds numbers
(Goodrich et al., 1990), and smaller-scale vortices are shed into the cavity
from the downstream end of the moving wall when the Reynolds number
increases beyond a critical value.

If the two-dimensional cavity problem is extruded in the third dimension,
instabilities arise which break the translational symmetry in this third di-
rection, leading to periodic patterns (Albensoeder et al., 2001a). The spatial
and temporal structure of the unstable modes of the linear stability prob-
lem depends on the height-to-width ratio (aspect ratio) with the so-called
Taylor-Gortler type of mode for unit aspect ratio being the precursor of the
three-dimensional unsteady vortices discovered by Koseff and Street (1984a)
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for higher Reynolds numbers. Generalizing the single-lid-driven cavity to a
cavity with two facing walls which move parallel or antiparallel to each other,
the basic two-dimensional flow can loose its uniqueness (Kuhlmann et al.,
1997; Albensoeder et al., 2001b). Moreover, a rich zoo of three-dimensional
flow instabilities can be observed which define the stability balloon (Alben-
soeder and Kuhlmann, 2003) of the two-dimensional flow in the parameter
space spanned by the aspect ratio and the two wall velocities. In the limit
of a shallow two-sided lid-driven cavity, the flow in the bulk of the cavity
approximates a class of parallel shear flows (with zero mean).

In cavities with a large span flow patterns can arise in the bulk which are
based on the periodic instability of a cavity infinitely extended in the third
dimension. The periodic flow patterns in the bulk, however, will be perturbed
by the presence of end walls on which no-slip boundary conditions must be
satisfied. The end-wall effect associated with the finite span is another topic of
interest and related to the Bodewadt boundary layer flow (Bodewadt, 1940).
In very short lid-driven cavities, such as a cube, the end-wall effects become
dominant. The flow in these short systems requires a full three-dimensional
numerical treatment from the outset. Feldman and Gelfgat (2010) discovered
the lid-driven flow in a cube to become time-dependent through a subcritical
(backward) bifurcation at a Reynolds number of the order of 2000. The in-
termittency of the chaotic flow immediately above the threshold (Kuhlmann
and Albensoeder, 2014; Loiseau et al., 2016) has only been explained recently
by Lopez et al. (2017). Accordingly, different, time-dependent solutions bi-
furcate subcritically from the steady three-dimensional flow with their upper
branches being unstable, except for a very small range of subcritical Reynolds
numbers. For still higher Reynolds numbers the flow undergoes a transition
to turbulence (Leriche and Gavrilakis, 2000). Of interest are the particular
properties of the turbulent flow which originate from the specific type of
driving and the three-dimensional confinement.

Time-dependent, two-dimensional as well as steady, three-dimensional,
cavity flows have also been employed to study fundamentals of chaotic mix-
ing (Chien et al., 1986; Jana et al., 1994a) and to investigate the transport
of suspended particles (Tsorng et al., 2008). The advection of fluid and the
transport of particles crucially depends on the underlying flow topology. An
interesting property of the flow topology at intermediate Reynolds numbers,
which affects the mixing, is the coexistence of chaotic and regular streamlines
(Ishii et al., 2012; Romand et al., 2017).

Many extensions are possible of the problem of rectangular lid-driven cav-
ity flow. A natural extension concerns the variation of the cavity shape.
Among those, cavities with triangular cross section have been considered (Li
and Tang, 1996; Gonzélez et al., 2011; Ahmed and Kuhlmann, 2012), cavities
with circular (Belhachmi et al., 2004) and semi-circular shapes (Migeon et al.,
2000; Glowinski et al., 2006), and cavities with geometric inserts making the
geometry more complex. Another important extension, is the heat transport
when the cavity walls are kept at different temperatures or in the presence
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of other heat sources (see, e.g., Mohamad and Viskanta, 1995; Prasad and
Koseff, 1996; Cohen et al., 2014). Finally, combinations of these effects have
been considered, including magnetic forces, compressibility effects, and cases
in which the cavity is filled with a porous medium or with a non-Newtonian
fluid.

2 Governing Equations

We consider the incompressible flow of a Newtonian fluid with constant den-
sity p and kinematic viscosity v in a cuboid with dimensions L, x L, x L, as
shown in figure 1. The Cartesian coordinate system is centered in the cavity.
The fluid motion is governed by the incompressible Navier—Stokes equations

0
8_11: +u-Vu=—-Vp+ Viu, (1a)
V-u=0, (1b)
where © = (u,v,w) is the velocity vector in Cartesian coordinates and

p the pressure. Length, velocity, time and pressure have been made non-
dimensional using the viscous scales L, v/L, L*/v and pv?/L?, respectively,
where L is the length of the sliding lid(s).

(a) single-lid motion (b) double-lid motion
* Yy \Y
U _

L. (A)

Fig. 1 Geometry of the cavities considered with dimensions L, L, and L, in z, y
and z direction, respectively. The coordinate origin ¢ (e) is located in the center of
each cavity. For one-sided driving (a) the lid at y = L, /2 moves with velocity Ue,
in « direction. For two-sided driving (b) the lids at * = £L, /2 move with velocities
—Uiey and Uszey in y direction, as indicated by the bold grey arrows. The circles (o)
indicate the intersection of the axes with the walls. The lateral boundaries are shown
in brighter grey. Non-dimensional lengths are given in parentheses.
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Two driving modes are considered: single-lid motion and double-lid mo-
tion. In the latter case two facing walls move in parallel or antiparallel di-
rection. Using the length of the moving lid L = L, for the single-lid cavity,
and L = L, for the double-lid cavity, the velocity boundary conditions on
the moving wall(s), Reynolds numbers and cross sectional aspect ratios are
defined to conform with the usual conventions

u(z,y = I'/2,2) = (Re,0,0),

single-lid motion: Re =UL/v, (2a)
r=1=L,/L,
u(r =+I'/2,y,2) = (0,FRey,2,0),
double-lid motion: Reyp = U oL/v, (2b)
I'=1L;/L,

where U, Uy, and U, are the velocity magnitudes of the moving lids as indi-
cated in fig. 1. On all other walls no-slip conditions © = 0 are imposed. In
addition, it is useful to define the span aspect ratio A = L. /L. All data re-
ported hereinafter have been converted to the present scaling and coordinate
systems, depending on the driving mode.

3 Corner Singularities

Among the reasons which made the lid-driven cavity one of the most (if
not the most) common benchmark in computational fluid dynamics is the
combination of its simple geometry and the presence of various corner sin-
gularities. The system does not require complicated meshing operations and
it allows all kinds of discretization methods to be tested; in addition, only
Dirichlet boundary conditions are required to define the mathematical prob-
lem. Therefore, all codes can easily be prepared to create a solver for the
lid-driven cavity. On the other hand, the singularities which arise at the cor-
ners and edges where different walls meet at a sharp angle make the exact
solution difficult to approximate and create numerical challenges, in partic-
ular, where the geometry changes abruptly and the boundaries move with
multi-valued velocities (Moffatt, 2001).

Several different singularities are encountered in the various lid-driven cav-
ity setups, which can be referred to classical problems of theoretical fluid
dynamics. In case of a two-dimensional one-sided cavity the local flow in the
edges can be represented by two singular flows (see fig. 2): Taylor’s scraper
problem (Taylor, 1960) (top-right zoom-in panel) and viscous corner eddies
(Moffatt, 1964a) (bottom-right zoom-in panel). Note the local flows in the sin-
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Fig. 2 Sketch of the typ-
ical streamline structure
in the lid-driven cav-
ity. The zooms show the
asymptotic corner regions
in which Taylor’s scraper
solution applies (top-right
panel) and where the
Moffatt sequence of ed-
dies forms (bottom-right
panel).

gular corners up- and downstream of the moving wall depend on Re, but be-
come equivalent for Re — 0. Owing to their significance for two-dimensional
and spatially-periodic three-dimensional cavity flows these singularities will
be discussed in Sec. 3.1. Other singularities arise when the flow is driven by
more than one lid and when the sliding walls share a common edge (see, e.g.,
Wahba, 2009; Cadou et al., 2012), or when only part of a flat wall is moving
while the remainder is at rest (Moffatt, 1964b). Far more complicated than
the two-dimensional edge flow is the flow in a corner near the point at which
three walls (which may move) meet. This problem has only been investigated
in the recent years (see, e.g., Shankar, 2005; Scott, 2013). A brief overview
of the main achievements is presented in Sec. 3.2.

3.1 Two-dimensional Singularities

The analysis of two-dimensional flows is greatly simplified by the introduction
of a stream function ¢ defined such that u = V x (¢e,). In this representation,
the incompressibility constraint is identically satisfied and the Navier—Stokes
equation reduces to!

VALl
ot

V') = Re +V x (ve.) -V (V). (3)
Seeking solutions to the singular corner flows in terms of planar polar coor-
dinates (r, 0) centered at the singular corner enables to treat arbitrary wedge
angles. The geometry and notation is sketched in fig. 3. In the typical asymp-
totic approach the stream function is represented in form of a power series
inr

1 Here the convective scaling with characteristic velocity U is used to facilitate the
mathematical analysis.
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Fig. 3 Wedge geometry ¢
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1
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k=1

k € N, subject to the normal and tangential velocity boundary conditions
a’r‘w|0:9i = 07 a'nd 7'_1601/1|9:9i = Ul(t)7 (5)

at the two walls (i = 1,2) and the angles ¢ = 0;, where U;(t) refers to
the tangential velocity of the i-th wall of the wedge. The smooth functions
J1(0,t) take care of the azimuthal and time dependence of the flow. The
coefficients ay, € C are complex and ordered with respect to their real parts
1 < R(aq) < R(az) < ... such that the higher k the less singular the k-th
term is in (4).

In creeping-flow approximation (Re — 0) (3) becomes the biharmonic
equation V4 = 0. The first solutions of the corner flow problem have been
obtained for Stokes flow (Dean and Montagnon, 1949; Taylor, 1960; Moffatt,
1964a) with the understanding that the creeping flow approximation holds
true for r|U|/v < 1.

When U; = U and U, = 0, one of the solid plates is at rest and it is
scraped along by the other plate with constant velocity U and at a constant
angle ¢ = 65— 6 (see fig. 3 and top-right of fig. 2). The creeping-flow solution
was given by (Goodier, 1934; Taylor, 1960, 1962)

Y =Urf(9), f=I0sin(¢)sin(¢—0) — ¢(¢— 0)sin(0)] /(¢* - sm%))i )
6
Further improvements have been obtained by Kondratiev (1967); Inouye
(1973); Moffatt and Duffy (1980); Gupta et al. (1981) and Hancock et al.
(1981) who included the effect of the inertial term in (3) on the Taylor’s
scraper flow by means of a boundary-layer approach, by corrective terms, or
by an expansion of ¢ in powers of Re. More recent advancements are con-
cerned with a generalization of the problem to include non-Newtonian effects
(Keiller and Hinch, 1991) or unsteady flows due to a time dependence of the
scraping velocities U; (Botella and Peyret, 2001).
The second singular problem to consider is the stationary corner for which
Uy, = Uy = 0. This class of singularity was first pointed out by Rayleigh,
Lord (1920), who considered creeping flows and showed that the homoge-
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Fig. 4 Sketch of the Moffatt eddies between two stationary walls enclosing a wedge
angle ¢ = 20° (adapted from Moffatt, 1964a). The numbers indicate relative intensi-
ties.

nous boundary conditions in (5) cannot be satisfied by the ansatz (4) with
real exponents. Successively, Dean and Montagnon (1949) contributed to the
solution of the Stokes-flow problem, which has been completely clarified and
explained by Moffatt (1964a). Moffatt introduced the notion of an infinite
progression of steady viscous eddies located in corners which include at least
one solid boundary. The type of eddies which form in the wedge between
stationary walls is sketched in fig. 4. For the important case of a wedge angle
¢ = /2 the radial location 7,41 from the origin of the center of an eddy
shrinks by a factor of &~ 16 compared to the distance r, of the neighboring
eddy. Moreover, the intensity measured by the velocity of the eddies falls off
by a factor of &~ 2000 between neighboring eddies. This explains the rapid
shrinkage and diminishing of succeeding eddies for ¢ = 7/2 as the apex is
approached. In the limit of vanishing wedge angle the eddies all have the
same radial width of ~ 1.39 times the gap width, while the relative strength
between neighboring eddies decays by a factor of about &~ 350 (see also Sec.
5.1). Moffatt (1964a) also determined the condition ¢ < 146° under which
this singular vortical pattern is resistant, even though viscosity dampens the
strength of the corner eddies.

For the previous case of inhomogeneous boundary conditions with at least
one wall moving, a local analysis was sufficient to provide the leading order
terms of the expansion (4). For the homogeneous case of stationary walls
the situation is different, because the strength of the singular flow must be
determined in a global sense by matching the local flow field with the one in
the bulk of the cavity. A matching technique and an extension of the series
expansion including inertial terms has been proposed by Botella and Peyret
(2001) and Botella et al. (2001).

Asymptotic solutions of this type of wedge-flow problems are of interest
also for other configurations. Extensions of Moffatt eddies to non-planar ge-
ometries have been investigated by Wakiya (1976) and Liu and Joseph (1978)
who considered axisymmetric conical flows, and by Malhotra et al. (2005) who
investigated a two-cone geometry. Davis et al. (1976) and Davis and O’Neill
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(1977) found viscous eddies also between two spherical surfaces and between
a cylinder and a plane, respectively.

3.2 Three-dimenstional Singularities

For three-dimensional flows the stream function formulation cannot always
be employed and the full set of equations in primitive variables has to be
considered. This complicates the problem which has remained, so far, unre-
solved.

Several attempts have been made to solve three-dimensional problems
which are, in some sense, similar to the corner flow near a moving bound-
ary. The first attempt was made by Hills and Moffatt (2000), who considered
the honing problem. In the rotary honing problem a blade is held in place
at a certain angle o with respect to a plate rotating with angular velocity
2. The center of rotation can either be on the line of contact between both
plates or displaced from it. In creeping flow approximation, Hills and Mof-
fatt (2000) derive a solution valid near the center of rotation and found the
three-dimensional streamlines to be closed curves whose projections normal
to the line of contact correspond to the streamlines of the two-dimensional
scraper problem of Taylor. They also extend the analysis to the case in which
two stationary intersecting planes are honed by a rotating cone which ro-
tates about the axis defined by the intersection of both stationary planes.
For the conical honing, similarity solutions were obtained which are related
to the similarity solutions for the two-dimensional wedge problem treated by
Moffatt (1964a).

Motivated by Hills and Moffatt (2000), Gomilko et al. (2003) investi-
gated the flow near a trihedral corner formed by three mutually orthogonal
planes, one of which is sliding or rotating tangentially. Solutions to the Stokes
flow problem were represented as a series over spherical harmonics. To find
the dominant asymptotic terms a Mellin transformation technique (Tranter,
1948) was used. Asymptotic streamline structures near the corner have been
obtained for the different modes of wall motion.

Further analyses have been conducted by Shankar (2000) and Shankar
(2007), who considered the three-dimensional Stokes flow in a semi-infinite
wedge. They concluded that, provided the set of eigenfunctions found to be
complete and the series representation convergent for the given boundary
conditions, there exists and infinite sequence of corner eddies in the neigh-
bourhood of the edge made by the stationary walls for the antisymmetric
class of solutions, but not for the symmetric class they found (see also Sano
and Hasimoto, 1980; Moffatt and Mak, 1999).

Further advancements are due to Leriche and Labrosse (2011), who nu-
merically computed the eigenmodes of the Stokes flow in a cubic cavity made
by stationary walls using a spectral collocation method. Within the numer-
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Fig. 5 Example for a typ-
ical asymptotic streamline
in a trihedral cone, ini- x
tiated from the bisector
plane containing the x
axis, under the merid-
ional angle 6§ = 1 (from
the z axis) and with the
distance » = 1 from the
apex. The streamline ap-
proaches the trihedral
corner along the dotted
line and returns along
the solid line. The radial
coordinate is compressed
by scaling with r1/6. The
figure is taken from Scott
(2013).

ical accuracy the authors could not find indications of the existence in a
trihedral corner of a three-dimensional analogue of the two-dimensional Mof-
fatt eddies. For the Stokes flow in a trihedral cone, however, Scott (2013)
numerically found Moffatt-type of modes in form of a two-parameter family
of asymptotically dominating flows made by a superposition of symmetric
and antisymmetric modes. Antisymmetric modes lead to closed streamlines
in the trihedral cone, while in the general case (including symmetric modes)
the streamlines are aperiodic. Typically, fluid elements approach the apex of
the corner in a spiraling fashion before they turn radially and spiral out. This
is illustrated in fig. 5. A comparison with the results of Leriche and Labrosse
(2011) is pending. The results of Scott (2013) were confirmed by the theoreti-
cal analysis of Davis and Smith (2014) using three sets of spherical coordinate
systems, as in Gomilko et al. (2003).

The asymptotic solution obtained by Gomilko et al. (2003) for a trihedral
corner is singular along the edge along which the velocity is discontinuous.
Therefore, to eliminate one of the edge singularities of the Navier—Stokes
problem in a cuboidal cavity flow, it is not possible to simply subtract the
leading-order terms of the two asymptotic solutions which belong to the two
corners having a line of discontinuity in common (see also Albensoeder and
Kuhlmann, 2005). In principle, an asymptotic matching operation would be
required. Moreover, a local asymptotic solution of the trihedral corner flow
taking into account inertial effects is still missing.
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3.3 Treatment of the Singularities

The singularities inherent to the definition of the lid-driven cavity problem
negatively affect the convergence and the accuracy of any approximate nu-
merical solution of the Navier—Stokes equations. To circumvent this problem,
leading-order local asymptotic solutions valid near singular corners and edges
may be utilized to reduce the singularity of the problem to be solved numer-
ically. Several analytic and numerical strategies have been developed in this
direction.

3.3.1 Singularity Annihilation

The method of singularity annihilation relies on an integral-equation formula-
tion of the problem based on a suitably chosen Green’s function. The domain
of integration is the whole cavity, except for the singular corners. These can
be excluded from the integral if the zeroth- and first-order derivative of the
selected Green’s function tends to zero at the moving lid. This method has
been successfully applied to Stokes flow involving biharmonic functions (Kel-
manson et al.; 1995; Kelmanson and Lonsdale, 1996). The method involves
only little computational load, but the existence of a suitable Green’s func-
tion requires that all the singularities are located on a straight or a circular
line (Boyling, 1995).

3.3.2 Singularity Incorporation

The singularity-incorporation method is a local approach which embodies the
asymptotic series defined for the singular corners only in a neighborhood of
the singularity. This method has been introduced by Kelmanson (1984) and
extended by Hansen and Kelmanson (1994) to treat singular creeping flows in
channels and corners. The method finds a natural extension and application in
combination with the finite-element method, where special functional bases
have been adopted near the singularities in order to well approximate the
asymptotic expansion (Fix et al., 1973; Georgiou et al., 1989). The method
also inspired other numerical techniques aimed at matching the local asymp-
totic with the global numeric solution (Ma and Ruth, 1994; Floryan and
Czechowski, 1995). The singularity incorporation relies on the knowledge of
the singularity, whose leading-order term of the asymptotic expansion for
two-dimensional flow is valid within a distance r» o Re~!. This condition
represents a strong limitation for such methods, restricting them to small
Reynolds numbers.
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Fig. 6 Convergence of
the global error of the
Lo-norm of the veloc-
ity (a) and the pressure
(b) in a one-sided lid-
driven square cavity for
Re = 1000. NSO indi-
cates results of the direct
Navier—Stokes solver. NS1
and NS2 denote the er-
rors for the Navier—Stokes
solvers supplied by a
first- and a second-order
singularity-subtraction
method, respectively.
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Botella and Peyret (2001).

3.3.3 Singularity Subtraction

The singularity subtraction method builds on asymptotic expansions about
the singular corners. The technique has been introduced by Symm (1973)
and was extended in Kelmanson (1983a,b) to deal with Stokes flows. In the
subtraction method the leading-order terms of the singular flow field, denoted
U, is subtracted from the full solution which is represented as u = w, + u..
Therefore, u. globally affects the remaining problem of solving for the less
singular part of the solution .. As a main achievement of the method only
a less singular problem for w, is left to be computed numerically, instead
of the fully singular solution w. This is a crucial advantage for high-order
methods for Stokes flows (Schumack et al., 1991; Schultz et al., 1989) and
for Navier—Stokes flows (Botella, 1997; Botella and Peyret, 1998, 1997, 2001;
Botella et al., 2001), since the singularity subtraction leads to a significant
improvement of the grid convergence (see fig. 6). The improved convergence
is due to the suppression of spurious modes which would otherwise appear all
over the domain and, in particular, on the boundaries (fig. 7) (Schultz et al.,
1989). Even though these spurious modes are not very evident for local,
low-order methods, e.g. classical finite difference or finite volumes, they still
condition the accuracy of the numerical solution. An evident demonstration of
this problem has been provided by Bruneau and Saad (2006), using the finite-
volume method on a staggered grid, who addressed the severe singularity in
the vorticity (w ~ 771) as the main cause of the not fully satisfactory grid
convergence (see the enstrophy and palinstrophy in table 7 of Bruneau and
Saad, 2006).
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Fig. 7 Streamlines (streamfunction 1, left half) and isolines of the vorticity w
(right half) of the creeping flow in a two-dimensional square cavity computed using
a pseudospectral Chebyshev method employing 11 modes. A comparison is shown
between results using a Stokes solver without (a) and with (b) subtraction of the
corner singularity. Spurious eddies of numerical origin are evident in (a), but largely
suppressed in (b). The figure is taken from Schultz et al. (1989).

3.3.4 Numerical Approaches

Despite the additional computational overhead, the singularity-subtraction
method is widely used. All other techniques mentioned above require the
knowledge of the full singular asymptotic expansion which, however, is un-
known for fully three-dimensional Newtonian cavity-flow problems and also
for two-dimensional non-Newtonian cavity flows. It is useful, therefore, to
mention other strategies which do not require the a-priori knowledge of the
asymptotic edge and corner flows. Among these numerical techniques is the
multi-grid approach (Hackbusch, 1978; Wesseling, 1982; Ghia et al., 1982;
Brandt and Livne, 2011). It is based on a series of grids on which the solu-
tion is alternatingly computed using restriction and prolongation operators.
This allows a high resolution near the singularity, while preventing solution
blowup on the coarse mesh far from it. Another widely used technique is
the application of a-posteriori filtering operators (see, e.g., Vandeven, 1991;
Botella and Peyret, 1998), which are proven to provide convergence for lid-
driven-cavity problems even in terms of the vorticity field (Botella and Peyret,
1998).
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3.3.5 Regularization

Finally, a widely used method to circumvent the singularity problem con-
sists of a suppression or attenuation of the singular component of the corner
flow by a modification of the boundary conditions on the moving lid. When
the numerical solution to the lid-driven cavity-flow problem is analysed in
its spectral components, the multi-valued velocity data at the singular edge
lead to the Gibbs phenomenon which spoils the numerical solution by falsely
increasing the amplitude of high-wave-number modes (cf. fig. 7a). The re-
sulting numerically-induced oscillations pose a problem, in particular, for
high-order methods. The Gibbs oscillations can be prevented by regularizing
the boundary conditions by letting the wall velocity smoothly tend to zero in
the vicinity of the singular edge. The regularization function can be polyno-
mial (Shen, 1991; Leriche and Gavrilakis, 2000; Gelfgat, 2006), trigonometric
(Kuhlmann et al., 1997), or exponential (Lopez et al., 2017). In any case, the
regularized problem is intended to mimic the original singular problem. How-
ever, rigorous studies which assess the influence of the regularization on the
prediction of flow properties such as, e.g. stability boundaries, are still lacking
(see, however, Gelfgat, 2006). To illustrate the problem we consider the Hopf
bifurcation in the one-sided, lid-driven square cavity: Employing a 4th-order
polynomial as regularization, Shen (1991) predicts a two-dimensional flow
instability for a Reynolds number in the range Re € [10000, 10500], whereas
for the non-regularized cavity Auteri et al. (2002b), employing a singularity
subtraction method, find the bifurcation to occur at Re € [8017.6,8018.8].

4 Numerical Methods

A general discussion of numerical methods for the lid-driven cavity is beyond
the scope of this chapter. However, many results presented in the following
sections are derived by use of a global linear stability analysis. In the classical
approach (Chandrasekhar, 1961; Drazin and Reid, 1981), two computational
steps are required: (i) the computation of a basic (reference) state whose
stability is to be probed and (ii) the analysis of the dynamics of infinitesimally
small perturbations of the basic state. Hereinafter, we are concerned with the
stability of stationary basic states. For the stability analysis of time-periodic
states, e.g. cavity flows due to an oscillating lid, by use of a Floquet analysis
(Tooss and Joseph, 2012; Barkley and Henderson, 1996) we refer to Blackburn
and Lopez (2011).
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4.1 Basic State

The flow at very small Reynolds numbers is unique and reflects the symme-
tries of the system (Leray, 1933). Moreover, the flow is stable (Serrin, 1959)
in the sense that any perturbation of the initial conditions, required for the
solution of the governing equations, will decay in time such that the flow al-
ways returns to the same basic state. Owing to the growing importance of the
nonlinear terms of the Navier—Stokes equations for larger Reynolds numbers
the flow may no longer be unique. At the Reynolds number at which new
flow states come into existence a bifurcation of solutions occurs. If multiple
solutions exist, small initial perturbations of a given flow, the basic flow, may
be amplified and lead to another flow state. Typically, the basic flow will still
exist, but be unstable. The significance of stable and unstable basic flows
derives from the fact that stable flows can be observed in experiments, while
it may not be possible to observe unstable flows, at least not for an arbitrary
long time.

Two methodologies are successfully employed to compute the steady basic
state, Newton—Raphson iteration and selective frequency damping. These
two methods are, in some sense, complementary regarding their strengths
and weaknesses.

4.1.1 Newton—Raphson Iteration

The Newton—Raphson method is usually adopted for the computation of
stationary two-dimensional basic states. Due to the local convergence, the
Newton—Raphson iteration requires a good initial guess. Therefore, some pre-
cursor iterations are often performed by a Picard iteration or by a fixed-point
iteration. However, when the initial guess belongs to the basin of attraction
of the steady basic-state solution, the Newton—Raphson iteration converges
quadratically.

To obtain the steady basic flow, the solution vector y = (u,v,w,p)” is
iterated y* — y**t! = y* + fy from an initial guess y°, where k is the
iteration step. Inserting y**! in (1) and linearizing the convective terms
with respect to the correction dy yields

(6w - Vu* +ub - Viu)
+Vép — V2u = — (u* - Vub) — VpF + V2>, (7a)
V-du=-V-u (7b)

from which the correction dy is obtained. The (k4 1)st Newton-iteration step
can be written in compact form

J(y*) oy =—f (¥F), (8a)
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Yy =" +dy, (8b)

where the Jacobian J is evaluated at the current iteration step k and f (yk) is
the non-linear residual of the Navier—Stokes and continuity equations (r.h.s.
of (7)).

Besides the advantage of rapid convergence and the drawback of local con-
vergence, it is evident from (8a) that the Newton—Raphson method requires
the computation and storage of the Jacobian matrix. Hence, this technique
does not represent a suitable option for the accurate stability analyses of
three-dimensional steady basic states, for which the number of degrees of
freedom makes the storage of the Jacobian matrix prohibitively expensive. To
overcome this weakness, Jacobian-free approaches have been proposed with
the aim of computing J (yk) -0y without storing J (yk) The most successful
among these methods is the class of so-called Jacobian-free Newton—Krylov
(JFNK) methods, which have been reviewed in Knoll and Keyes (2004).

4.1.2 Selective Frequency Damping

The selective frequency damping (SFD, Akervik et al., 2006) is a technique
inspired by control theory, which adds a forcing term to the Navier—Stokes
equation in order to drive the system to a certain steady state by means of
a low-pass filter which damps unsteady oscillations. In

%_?+u-vu:—VP+V2U—X(U_ﬁ)= (92)
V-u=0, (9Db)

ou _
Fn = we (u— 1), (9¢)

the forced Navier—Stokes equation (9a) and continuity equation (9b) are aug-
mented with an equation (9¢) which rules the damping through the filtered
state @. When the filtered state @ coincides with u, the forcing term x (u — @)
as well as 0;@ vanish, and u and p become a stationary solution of (1). Two
real parameters have been introduced to control the flow: the gain x > 0
and the cut-off circular frequency w. of the filter. Suitable parameters for
these variables are related to the physically meaningful growth rate o and
oscillation frequency w of the most dangerous perturbation of the basic state,
which the filter is supposed to damp. For being successful, the method re-
quires x > o and w,. < w. If w is known one typically sets w, = w/2.

Among the main issues of the selective-frequency-damping method is the
growth rate and oscillation frequency of the instability to suppress are often
unknown a-priori. This makes difficult the choice of x and w.. Too conserva-
tive values for w. and x results in a very slow rate of convergence, leading to
enormous computational costs (Loiseau, 2014). To overcome this difficulty,
more advanced methods have been proposed, which combine the basic state
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computed by selective frequency damping with the evaluation of its dominant
eigenvalue: Based on the current estimates for o and w the optimal choice
for the control parameters y and w,. is made (Jordi et al., 2015). Despite the
computational overhead in estimating ¢ and w, the advantage in retrieving
an optimal convergence rate can be significant. The main advantage of the
SED over the classical Newton method is the selective frequency damping
method does not require additional matrices to be allocated and (9) can be
solved with a standard projection method.

4.2 Linear Stability Analysis

Once the steady basic state has been computed as described in Sec. 4.1, its
stability with respect to infinitesimal perturbations can be investigated by
means of a linear stability analysis. To that end the total flow is decomposed

u(x,t) = uo(x) + o/ (x, ), (10a)
p(x,t) = po(®) +p'(2,1), (10b)

into a steady basic flow (indicated here by the subscript 0) and perturbation
quantities (indicated by a prime) which are assumed to be small. Inserting
the full flow fields w and p into the Navier-Stokes equations (1), taking into
account that (1) is satisfied by (ug,po) alone, and linearizing the resulting
equations with respect to the perturbation quantities yields the linearized
Navier—Stokes equations for the perturbations

ou’
ot

+u' - Vug+ug - Vu' = -Vp' + V3, (11a)
Vou =0 (11b)

The perturbation flow is driven by the basic flow through the two advective
coupling terms. In short (11) can be written as

ou’ ,
—C. 12
o C-vy, (12a)
V-u =0, (12b)

where C' is the linearized operator which includes convective, viscous and
pressure terms of the momentum equation with (12b) enforcing the solenoidal
constraint on the perturbation y’ = (u/,p’)?. Two classes of methods are
employed for solving (12a).

Matrixz-based methods exploit the steadiness of the basic state. Owing to
the linearity in 4’ and the homogeneity in ¢ of the perturbation equations,
solutions to (12) can be sought in form of so-called normal modes
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[w'(2, 1), ' (=, 1)] = [a(z),p(x)] " +c.c., (13)

where c.c. is the complex conjugate and v = o + iw is a complex growth rate
with real growth rate o and real oscillation frequency w. Therefore, a normal-
mode type of perturbation (13) will decay or grow exponentially if o < 0 or
if o > 0, respectively. At Reynolds numbers Re,, at which o changes its sign
the basic flow is neutrally stable with respect to the particular normal mode
and a pair of new solutions bifurcates from the basic state. If, at neutral sta-
bility (¢ = 0), w = 0 vanishes, the neutral normal mode is stationary. On the
other hand, if w # 0 the neutral normal mode is oscillatory, leading to a Hopf
bifurcation (Hopf, 1942). Among the different possible values Re,, can take,
its minimum value is called the critical Reynolds number Re.. The exponen-
tial time dependence holds true only for infinitesimal perturbations. Once
a perturbation has grown to a considerable amplitude the nonlinear terms
u’ - Vu/, which are neglected in (11), have to be taken into account, which
typically limits the exponential grow, often leading to a nonlinear saturation
of the amplitude of the perturbation flow.
Inserting the ansatz (13) into (12) the problem is reduced to the generalized
eigenvalue problem
vA-§ =B, (14)

where § = (u,p)”, A is the system matrix and B includes the operator
C and the incompressibility constraint. Since a general perturbation can be
represented as a superposition of all possible normal modes, equation (14)
must be solved in order to find the eigenpair (7, ¢) with the maximum possible
growth rate o, belonging to most dangerous mode y. A basic flow is linearly
stable, if maxo < 0, and it is linearly unstable if at least one eigenvalue ~y
exists for which o > 0.

Once the matrices A and B are assembled and stored, the corresponding
eigenvalue problem can be solved by means of different techniques, such as
Jacobi’s diagonalization method (Parlett, 1980), the power method (Golub
and van Loan, 1989), Lanczos’ method (Lanczos, 1950), Arnoldi’s method
(Arnoldi, 1951) or Davidson’s method (Davidson, 1975, 1983; Crouzeix et al.,
1994; van Lenthe and Pulay, 1990; Sleijpen and van der Vorst, 2000).

Matriz-free methods intend to solve (12a) directly, without assembling and
storing matrices. The very large size of the matrix representation of the linear
operator C for three-dimensional meshes and the corresponding prohibitively
expensive memory requirements for allocating A and B explain the increas-
ing importance of matrix-free methods for the stability analysis of three-
dimensional basic states as compared to matrix-based methods (see, e.g.,
Bagheri et al., 2009; Loiseau, 2014; Peplinski et al., 2014, 2015).

The most popular matrix-free method in fluid dynamics is the time-stepper
approach. It was initially proposed by Marcus and Tuckerman (1987), then
elaborated by Edwards et al. (1994), and recently employed by Bagheri et al.
(2009) for performing the first stability analysis of a three-dimensional basic
state. The time-stepping method is based on a projection of (12a) onto a
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solenoidal velocity-vector space which analytically satisfies (12b). In such
a functional space, the system of equations (12) formally reduces to (12a),
which admits the solution

y' (At) = eCAt. Yo, (15)

where vy, is the initial guess of an iteration of (15) and the matrix exponen-
tial M(At) = e“4t is called time propagator or exponential propagator. The
advantage of this method is there is no need of ever assembling the matrix
M(At). The effect of M(At) on yo can be obtained by time-marching (11),
projected on the divergence-free vector space of w’. The set of n iterated
vectors

K (M, y4) = {yo, My, M>yj, ... M" 'y, } (16)

spans a Krylov space K,,. The set of Krylov vectors can then be orthogonal-
ized, e.g. within the Arnoldi method. The orthogonal vectors provide good
approximations to a subset of the eigenvectors of (14), namely the ones with
the maximum absolute eigenvalues |y|. Among these eigenvalues the one with
the largest real part has to be found by suitable mappings. Typically, only
a relatively small dimension n = O(100) of the Krylov subspace is required
to yield sufficiently accurate results for the largest eigenvalues, their number
being limited by the dimension of K,. Modal and non-modal approaches to
global stability analysis have recently been reviewed by Theofilis (2011) in a
more general context.

5 Two-Dimensional Cavity Flows

The two-dimensional flow in the (x,y) plane can be thought of being embed-
ded in the three-dimensional problem by extruding the two-dimensional flow
field w = (u,v,0) in z direction and by letting L, — oco. The numerical cal-
culation of two-dimensional cavity flows requires little resources. The system
thus provides an efficient test bed for numerical codes and for studying pure
two-dimensional flow physics.

5.1 Single-Lid-Driven Cavity

The first numerical investigation of the flow in a single-lid-driven cavity is
due to Kawaguti (1961), who performed simulations for creeping as well as
for nonlinear flows for Reynolds numbers up to Re = 128, investigating three
aspect ratios I' = 0.5, 1 and 2. Only after the more extensive theoretical and
numerical study of Burggraf (1966) the lid-driven cavity became a bench-
mark problem for Navier—Stokes solvers (Ghia et al., 1982; Schreiber and
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Fig. 8 Characteristic velocity profiles u(0,y) and v(z,0) on the two orthogonal
centerlines of a square cavity (I" = 1) for Re = 102 (x, full line), 10® (+, dashed
line) and 10* (o, dash-dotted line). Adapted from Albensoeder (1999). Data shown
as symbols are from Ghia et al. (1982).

Keller, 1983; Botella and Peyret, 1998; Albensoeder and Kuhlmann, 2005),
as well as a paradigm for investigating vortex dynamics in closed systems.
Figure 8 shows a typical plot of the velocity components along the two cavity
centerlines for different Reynolds numbers.

Typical streamline patterns of the two-dimensional global recirculating
vortex driven by the moving wall for Re = 1 and Re = 8x 102 are shown in fig.
9. For Re = 1 the streamlines are nearly symmetrical, due to the symmetries
of (1) in the Stokes-flow limit Re — 0. The streamlines are slightly crowed
near the moving lid, where the largest velocities arise, and two separated
eddies in the bottom corners are signaled by the two separating streamlines.
When the Reynolds number is large (Re = 8 x 10%), inertia terms in (1)
destroy the reflectional symmetry with respect to z = 0 of the flow. The
separated vortices at the bottom become stronger, even a second separated
vortex is visible in the bottom right corner of figure 9b, and a third separated
region is created, for Re 2 1000, close to the upstream corner of the moving
lid near (z,y) = (—0.5,0.5). For even higher Reynolds numbers the core of
the vortex approaches a solid-body rotation with circular streamlines and
constant vorticity (Batchelor, 1956). This can be seen in fig. 8 where the
velocity profiles become linear in the bulk for high Reynolds numbers.
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Fig. 9 Isolines of the Stokes streamfunction in a square cavity (I" = 1) with Re =1
(a) and Re = 8 x 102 (b). The lid at the top moves to the right. The streamlines are
not equidistant to visualize the flow in the separated regions in (b).

For shallow cavities (I" <« 1) and small Reynolds numbers the streamlines
become nearly parallel, except for the turning zones near z = +0.5. For
deep cavities (I" > 1), on the other hand, the flow separates repeatedly. An
example with three vortices is shown in figure 10. The main vortex, whose
core develops circular streamlines for high Reynolds numbers, drives another
weaker separated and counter-rotating vortex, and so on. When the strength
of the vortices has decayed from the moving wall such that the flow becomes
creeping and for I" — oo the vortices take a self-similar shape, similar to that
of the middle eddy in 10, but symmetric with respect to 2 = 0 (see also fig.
2 of Pan and Acrivos, 1967; Cheng and Hung, 2006; Lin et al., 2011; Sousa
et al., 2016). Note the strong asymmetric shape of the streamlines and the
curved lines of separation. The asymptotic depth of the eddies far away from
the moving wall (in creeping flow) is Ay = 1.39 (Moffatt, 1964a).

While the two-dimensional flow for small and moderate Reynolds numbers
is steady, it undergoes a Hopf bifurcation and becomes time-dependent for
higher Reynolds numbers when inertia effects become larger. The breaking of
the time translation symmetry has been initially overlooked for square cavi-
ties (see, e.g., Ghia et al., 1982). However, Gustafson and Halasi (1987) found
flow oscillations in time for Re = 10* and I" = 2, and Goodrich et al. (1990)
bracketed the Reynolds number for the onset of time-dependence for I' = 2
to Re. € [2000,5000]. Shen (1991) further investigated the lid-driven square
cavity discovering a Hopf bifurcation for I' = 1 with a critical Reynolds num-
ber Re. € [10000, 10500]. The study of Shen (1991) has revealed the existence
of a complex, time-dependent dynamics in the lid-driven square cavity. How-
ever, the results were obtained using a strong regularization of the driving
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Fig. 10 Streamlines for Re = 1000 and I" = 3. Near the bottom right the isolines
become wavy due to the resolution limit. The lid on the left side moves upward.

force (see Sec. 3.3.5) by assuming the lid to have a symmetric parabolic veloc-
ity profile U(x) = Re(1 — 42?%) which vanishes at the corners z = 4-1/2. The
much more accurate result Re.(I" = 1) = 8018.24+0.6 was obtained by Auteri
et al. (2002a). They used a Galerkin spectral method based on Legendre poly-
nomials to discretize the Navier-Stokes equations, a singularity subtraction
method to treat the corner singularities, and bisection to pinpoint the critical
threshold. The critical Reynolds number obtained by Auteri et al. (2002a)
is consistent with the results of Nobile (1996) (Re. € [7500,10000]) and of
Bruneau and Saad (2006) (Re. € [8000,8050]) who, in addition, provide ex-
tensive benchmark data. For long times the amplitude of oscillation saturate.
Several authors have accurately reconstructed the corresponding limit cycle
in phase space (Auteri et al., 2002a; Bruneau and Saad, 2006; Peng et al.,
2003). All these studies have been conducted integrating the time-dependent
Navier—Stokes equations. The existence of a Hopf bifurcation for the square
cavity has also been confirmed by means of linear stability analyses. These
were performed by Poliashenko and Aidun (1995) (Re, = 7763 + 2%), fol-
lowed by Fortin et al. (1997) (Re. = 8000) and Sahin and Owens (2003)
(Re. = 8069.76). Even though the critical Reynolds number varies somewhat
among the different investigations, a good agreement has been obtained for
the critical oscillation frequency w./Re = (2.85 4 0.02). Quite different (and
likely less accurate) results for the critical frequency are due to Cazemier
et al. (1998) who tried to identify the Hopf bifurcation by means of proper
orthogonal decomposition (Re. = 7819 and w./Re = 3.85). The transition to
more complicated dynamics is discussed in Sec. 9.1.

5.2 Double-Lid-Driven Cavity

For the double-lid-driven cavity flow the moving walls, the length scale and
the aspect ratio I' are defined differently from the one-sided driving, see
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(2) and fig. 1. The flow is driven by two facing walls at * = £I'/2 which
move with constant velocities Uj 2 in parallel or anti-parallel y direction. The
problem is characterized by two Reynolds numbers Re; = U, L, /v and the
aspect ratio I' = L, /L,,.

The two-sided lid-driven cavity was introduced by Kelmanson and Lons-
dale (1996) to study the evolution of the eddy structure in this system as
a function of the aspect ratio and the relative motion of the walls. They
considered the limit of creeping flow and solved the biharmonic equation for
the stream function using and integral-equation technique treating the corner
singularities by the singularity annihilation method (Sec. 3.3.1).

Independent of this investigation, Kuhlmann et al. (1997) considered the
nonlinear Navier—Stokes flow in the two-sided lid-driven cavity for I = 1.96
and found the two-dimensional flow not to be unique. In case of deep cavities
I' 2 2 each moving wall can drive its own (nearly square) vortex. Consider one
of these vortices: Downstream from the downstream corner of the respective
moving wall, a wall jet is created. The wall jet separates from the downstream
stationary wall and re-attaches to the opposite (upstream) stationary wall of
the same moving lid due to the suction (strong underpressure) the upstream
corner of the moving wall provides. This is similar as for one-sided driving
shown in fig. 10. However, if the Reynolds numbers Re; = Res are sufficiently
large and the walls move in opposite directions (antiparallel wall motion)
another flow state exist, in addition. In this new state (fig. 11a, middle) the
wall jet (from each of the two downstream corners) does not separate and can
reach to the opposite moving wall, where it gets entrained by the upstream
corner flow of the opposite moving wall which is now providing the suction
on the wall jet.? Additional flow states for antiparallel wall motion can arise
due to breaking of the point reflection symmetry with respect to the center
(xz,y) = (0,0). For parallel wall motion with Re; = Res flow multiplicity can
also be caused by spontaneous breaking of the reflection symmetry of the
flow with respect to z = 0.

The non-uniqueness of the two-dimensional double-lid-driven cavity flow
was studied more systematically by Albensoeder et al. (2001b). They found
up to seven different two-dimensional steady flow states for the same bound-
ary conditions. Multiplicity is observed for condition near Re; = Res when
both walls move either in parallel or anti-parallel direction. An example is
shown in fig. 11. If the different flow states are characterized by the order
parameter & = (0, 0), where ¢(0,0) is the stream function in the center of
the cavity, one finds the bifurcation diagram shown in fig. 11b.

The results of Albensoeder et al. (2001b) have been extended to higher
Reynolds number for parallel and anti-parallel driving by Chen et al. (2015)

2 The deep penetration of the wall jet observed experimentally by Pan and Acrivos
(1967), which is in contradiction with the results for pure two-dimensional single-lid-
driven flows (Sec. 5.1), might have been caused by the strong geometric confinement
in z of the flow in their experiments with L, = L,,.
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Fig. 11 Flow multiplicity for I" = 2. (a) Three out of the seven different flow states
for Re; = Res = 700 and anti-parallel wall motion (left up, right down). From top to
bottom: point-symmetric two-vortex flow, strongly merged vortex flow and strongly
asymmetric vortex flow. (b) Bifurcation diagram with order parameter &(Rei) =
(0, 0; Rey) for a constant mean Reynolds number (Re;+Rez)/2 = 700. (Albensoeder
et al., 2001b)

and Chen et al. (2013), respectively, using an arclength continuation method
(Keller, 1977) combined with a stability analysis.

6 Spatially Periodic Lid-Driven Cavity

The incompressible flow in lid-driven cavities is determined by the Reynolds
number, the initial, and the boundary conditions. To remove the effects on
the flow of the lateral confinement by solid end walls it is useful to let A — oo
and investigate flows which are periodic in z. Such periodic flows arise due
to three-dimensional instabilities of the two-dimensional basic flow and they
help understanding the flow in cavities with finite span.
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Fig. 12 Snapshot of Taylor—-Gértler vortices for Re = 3300 in a cavity with I" = 1 and
A = 3, reproduced from Freitas et al. (1985). The flow is illuminated and shown in the
plane x = 0.26. The lid moves on the upper boundary of the image and perpendicular
to the plane shown. The left boundary is made by one end wall, whereas part of the
cavity to the right is clipped.

6.1 Single-Lid-Driven Cavity

In a series of publications Koseff et al. (Koseff et al., 1983; Koseff and Street,
1984a,c) experimentally and numerically investigated the lid-driven cavity
flow (fig. 1a) for I' = 1 and A = 3. For Re = 2000 and 3000 they found three-
dimensional vortices aligned with the streamlines of main basic-flow circula-
tion (primary vortex). The streamwise vortices were most pronounced near
the separating streamline of the basic flow between the primary vortex and
the separated downstream secondary eddy in the corner (x,y) = (0.5, —0.5)
(lower right corner in fig. 9a). The diameter of these streamwise vortices was
relatively small compared to the scale L of the flow such that for Re = 3000
eight pairs of vortices fit in the span of A = 3, fairly equally spaced. The
streamwise vortices were termed Taylor—Gortler-like vortices, because they
resemble Gortler vortices (Gortler, 1941; Gortler, 1954) and the mean veloc-
ity profile in the (z,y) plane is similar to that above a curved concave wall.
An example is shown in fig. 12.

The explanation of the Taylor—Gortler-like vortices does not rely on the
finite span. The vortices are, however, affected by the presence of the lateral
side walls (Koseff and Street, 1984b) at z = £4/2. To distinguish between
the effects on the flow which are introduced by the boundary conditions on
the lateral end walls at z = £4/2 and those which are due to the flow in
the bulk, i.e. far from the end walls, it is useful to consider the mathematical
idealization of an infinitely extended cavity with A — oco. In this limit the
problem becomes homogeneous in z and the side-wall effects are absent. It
is expected that the properties of the flow for A — oo can be recovered
in the bulk of an experimental system, provided the span aspect ratio A is
sufficiently large.



The lid-driven cavity 27

6.1.1 Flow Stability

For A — oo the two-dimensional flow becomes three-dimensional when the
Reynolds number is increased beyond a critical threshold. To determine the
critical Reynolds number at which the translational symmetry in z is broken
we consider infinitesimally small perturbations of the steady two-dimensional
basic flow, as in Sec. 4.2. Therefore, the equations governing the deviations
(u/,p’) from the basic flow can be linearized to obtain the linear stability
equations (11). Since the basic flow and the coefficients of (11) neither depend
on t nor on z, the perturbation flow can be expressed as a normal mode in ¢
and z

[ (@, ),/ (,1)] = [l y), 5, y)]e " + c.c. (a7)

Note that (17) differs from the more general form (13), because the homo-
geneity in z of the problem could be exploited. The linear stability problem
reduces to the generalized eigenvalue problem (14) in which the matrix B
depends on ug(z,y) and on the wavenumber k, which results from the ex-
plicit differentiations with respect to z in (11). Hypersurfaces Re, (I, k) in
parameter space along which the growth rate of a particular eigenfunction
of the linear stability problem (14) vanishes, i.e. o(Re,, I, k) = 0, are called
neutral Reynolds numbers (subscript n). Apart from the continuous depen-
dence of the spectrum on k, there also exists a discrete part of the spectrum
Ym (Re, I, k) enumerated by the modal index m € N. Therefore, Re,, (I, k, m)
must be minimized with respect to the continuous wave number k£ and the
discrete index m in order to find the critical Reynolds number for given aspect
ratio: Re.(I") = ming ., Re, (I, k, m). The critical Reynolds number Re.(I")
is the lower envelope of all neutral Reynolds numbers. Note, the condition
Re > Re, is sufficient for the flow to be three-dimensional.

The first linear stability analyses have been carried out for I" = 1 by Ding
and Kawahara (1998), Ding and Kawahara (1999) and Ramanan and Homsy
(1994). A more complete analysis was presented by Albensoeder et al. (2001a)
who computed the linear stability boundary Re.(I"), the critical wavenum-
ber k.(I') and the critical frequency w.(I") as functions of the aspect ratio
I'. Their results are reproduced in figure 13. The critical curve is the enve-
lope of the neutral curves Rey(I") (full lines) which is made from different
segments. The four segments represent different perturbation flows (modes)
which are denoted C¢* Albensoeder (2004), where C' stands for centrifugal,
the superscript @ = e for one-sided driving (einseitig in German) and the
subscript enumerates different modes. Also Theofilis et al. (2004) considered
the linear stability of the periodic cavity flow. The critical Reynolds numbers
computed agree with those of Albensoeder et al. (2001a) for I" = 1, but they
deviate qualitatively from each other for I" # 1, with experiments (see, e.g.,
Siegmann-Hegerfeld et al., 2008, and fig. 24b below) being in favor of the
results of Albensoeder et al. (2001a).
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Fig. 13 Neutral Reynolds numbers Re,, (full lines), neutral wave numbers k,, (dotted
lines), and neutral oscillation frequencies w,, (dashed lines) as functions of the aspect
ratio I'. Symbols indicate results of Ding and Kawahara (1999) (4) and Kuhlmann
et al. (1997) (x) (from Albensoeder et al., 2001a)

In the important reference case I' = 1 the bulk flow instability arises at
Re. = 786.3+6 and the critical mode is steady (w. = 0) with k. = 15.43+0.06
which is very short wave. This compares well with the experiments of
Siegmann-Hegerfeld et al. (2008) who find a supercritical bifurcation to
Taylor-Gortler vortices at Re = 791 + 15 for I' = 1 and A = 10.88. The
relative perturbation velocity — the amplitude of the unstable mode remains
undetermined in the linear analysis — is highest near the wall at x = —0.5
upstream of the moving wall. The velocity vectors of the critical mode C§ in
the plane y = 0, parallel to the moving wall, are shown in fig. 14. The exper-
imental visualization of the flow resulting from the instability is shown in fig.
15. The short wavelength and the spatial structure of the critical mode C§ are
consistent with the early observations of Koseff et al. (1983) for much higher
Reynolds numbers. The reason for the particularly short spanwise wavelength
is the Taylor—Gortler vortices scale with the thickness of the curved boundary
layer on the solid walls which is much smaller than the length scale L,,.

The dominant destabilizing interaction mechanism between the basic flow
and the critical mode C§ is due to the term ', - Vug in (11), where o/, is
the component of the critical velocity field perpendicular to the basic flow
ug. In plane shear flows the process associated with this term is called lift-up
mechanism (Landahl, 1975). In using a local decomposition of the critical
mode u’' = u} + u/| parallel and normal to the direction of the basic flow,
one can show that the lift-up mechanism acts over most parts of the outer
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Fig. 14 Velocity field of the critical mode C§ (without the basic flow) for I =1 in
the plane y = 0. The lid moves from right to left. The grey scale indicates the local
energy production rate —uil - (u’| - Vug)/D (from Albensoeder et al., 2001a).

Fig. 15 Experimen-
tal visualization of the
Taylor—Gortler vortices
for I' = 1 and Re = 850
in a plane z ~ —0.4 using
aluminum flakes. Shown
is the central fraction of
a finite-length cavity with
A = 6.55 (from Alben-
soeder et al., 2001a). The
lid at the bottom moves
into the plane shown.

streamlines of the basic flow, except near the moving wall. A frequently used
scalar measure of this process is the local transfer rate of kinetic energy from
the basic state to the three-dimensional perturbation mode (energy per time
and volume) given by Iz (z) = —u|-(u/, -Vuo)/D which is shown as grey scale
in fig. 14 and where D is the total rate of dissipation per period of the flow.
Additional considerations (Albensoeder et al., 2001a) confirm the centrifugal
nature of the instability and justify the name Taylor-Gortler vortices.

For other aspect ratios the instability is also centrifugal in nature, but
can have different flow structures, wave numbers and time dependence. In
total, four different critical modes are destabilized with the other modes
(C5, Cs, C%) typically having smaller critical wave numbers than the Taylor—
Gortler vortices C§ for I' = 1 (see fig. 13). In deep cavities with I" > 1.207 the
basic vortex flow becomes unstable to a stationary centrifugal mode Cf which
makes the vortex wavy along the z direction (Albensoeder et al., 2001a). Cor-
responding experiments have been carried out by Siegmann-Hegerfeld et al.
(2013) for I' = 1.6.
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In the other limit, for shallow cavities with I" < 1, the basic flow in the
bulk near x = 0 approaches a Couette—Poiseuille flow with zero mean. This
shear flow would be linearly stable if the turning zones at x = £0.5 are
disregarded. However, near the downstream end of the moving lid a vortex
forms, while the flow at the upstream end is of entry-flow type. In such shallow
cavities the instability arises as a wave on the downstream located vortex
(mode CY), traveling in z direction with a wavelength that approximately
scales with the depth I" of the layer, a length scale which is more appropriate
for shallow cavities than the length scale L = L, employed for the single-lid
cavity (fig. 1a). Similarly, the critical Reynolds number approximately scales
like Re. ~ I'"! (Albensoeder et al., 2001a), visible by the divergence of Re..
in fig. 13 for I" — 0.

6.1.2 Nonlinear Three-Dimensional Flow

As the Reynolds number is increased beyond the threshold, finite-amplitude
flows exist. Since it is computationally quite expensive, there are not many
systematic studies on three-dimensional periodic finite-amplitude flows. An-
other complication is the spatial period A = 27 /k of the flow is no longer
uniquely determined for Re > Re., because Taylor—Gortler vortices out of a
whole band of wave numbers are linearly unstable and may saturate, for long
times, or vary slowly in z. In an experimental realization the nearly periodic
flow in the bulk is also affected by the finite length L, of the system.

Albensoeder and Kuhlmann (2006) numerically simulated the supercritical
three-dimensional flow with saturated amplitude and spanwise periodicity
A = A in cavities with a square cross section (I" = 1). For the wavelength
A = 27 /k = 0.407, corresponding to the period of the critical mode C§ of
the linear stability analysis, the amplitude of steady periodic Taylor-Gortler
vortices was found to depend on the normalized distance e = (Re — Re.)/Re.
from the critical point like ~ €345, This paradoxical result (the generic
exponent is 0.5) can be explained by the range of e considered for the fit
to determine the exponent and by the bifurcation being supercritical for
k > k. and subcritical for & < k.. This peculiar property of the transition
is demonstrated by the existence range of Taylor—Gortler vortices shown in
fig. 16. The squares mark the existence boundary of a pair of Taylor—Gortler
vortices within a periodic domain of length A for given Reynolds number. To
find the existence ranges in the (Re, A) plane both parameters were changed
in small steps and the flow was simulated keeping the parameters constant
until a steady state was reached (Albensoeder and Kuhlmann, 2006). Upon
an increase of the spatial period A and for Re > 900 the single pair of
Taylor—Gortler vortices smoothly transforms into a flow with two pairs of
Taylor—Gortler vortices. The three rightmost squares in fig. 16 indicate the
vanishing of the fundamental Fourier mode characterizing a single pair of
Taylor-Gortler vortices.
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Fig. 16 Neutral stability boundary (solid line) and existence boundary of a finite
amplitude Taylor-Gortler vortex pairs (L) as functions of the spanwise period A (or
the wave number k = 27 /A) for I' = 1 (square cross section). The length of the error
bars indicate the step size and direction of the quasi-static parameter variations of I”
or Re. The dashed and dashed-dotted lines marks the neutral curves for two and three
Taylor—Gortler-vortex pairs, respectively. The resolution of the simulations using a
spectral method is N, X Ny x N, = 34 x 34 x 25 (from Albensoeder and Kuhlmann,
2006).

Increasing the spatial period A flow states with one, two, three, etc. pairs of
Taylor-Gortler vortices can arise in the system. The numbers of vortex pairs
nrg are given as roman numbers in fig. 17. The spectrum of the periodic flow
contains spatial harmonics m with wavelengths \,, = A/m. The number
of vortex pairs nrqg is signaled in the simulations by the lowest harmonic
m = npg present in the spectrum. The symbols in fig. 17 indicate at which
point the amplitude of the fundamental spatial harmonic m vanishes upon
a variation of Re (for lower Reynolds numbers) or A (for larger Reynolds
numbers). As A is varied the flow either returns to the steady two-dimensional
flow (low Reynolds numbers) or it changes smoothly to a flow state with a
different number ntqg of Taylor—Gortler vortices. Along line a the amplitude
of the Fourier mode m = 2 vanishes as A is decreased. Along line b the
amplitude of the Fourier mode m = 1 vanishes as A is increased. Between the
existence ranges dominated by two and three pairs of Taylor-Gortler vortices
the flow for Re > 850 is found to be oscillatory (cross-hatched stripes),
while between the ranges at which three and four pairs of Taylor—Gortler
vortices dominate and Re > 850 the flow becomes spatially modulated upon
a variation of A, indicated by the hatched stripes. Along line ¢ the amplitude
of mode m = 4 vanishes as A is decreased.

Further details on the properties of nonlinear Taylor—Gortler vortices in
periodic domains with I" = 1 can be found in Albensoeder and Kuhlmann
(2006). Numerical simulations for Re = 1000 and periodic boundary con-
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Fig. 17 Nonlinear stability boundaries for one ([J), two (), three (A) and four (O)
pairs of Taylor-Gortler vortices (also indicated by roman numbers) in the (A, Re)
plane. The neutral-stability curves for ntq = 1, ...,4 pairs of Taylor—Goértler vortices
are shown as full red lines. See text for further explanation (adapted from Albensoeder
and Kuhlmann, 2006).

ditions with A = 1 (Chicheportiche et al., 2008) are consistent with the
nonlinear results of Albensoeder and Kuhlmann (2006).

6.1.3 Obliquely-Driven Cavity of Infinite Span

A problem related to periodic cavity flow is the lid-driven flow in a duct
(A — o0) in which the lid moves in the same plane as before, but at an angle
¢ with respect to the = axis. This case has been considered by Theofilis et al.
(2004) for I' = 1. Owing to the angle ¢ # 0 being non-zero and the vanishing
pressure gradient in z a net flow exists in direction of the spanwise component
of the wall motion. As a result the eigenmodes are typically traveling waves.
Theofilis et al. (2004) find that for a small deviation of the direction of motion
of the lid (¢ = «/8) from the classical lid-driven cavity (¢ = 0) similar
unstable modes exist as for ¢ = 0. As ¢ increases the eigenmodes become
damped substantially with maximum amplification rates at Re = 900 and
Re = 1000 being about a factor of two smaller for ¢ = 7/4 than for ¢ = 7/8.
Moreover, the eigenvalues of the most dangerous modes become crowded and
are not so well separated as for ¢ = 0. On a further increase of the angle to
¢ = 37/8 the growth rates recover, but the range of wavenumbers k for which
the growth rate is positive for the above Reynolds numbers is shrinking to a
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Fig. 18 Streamlines
of the two-dimensional
steady flow in an an-
tiparallel lid-driven cav-
ity for I" = 1.96 and
Re; = Res = 257 (crit-
ical conditions). The
dashed line indicates the
main strain direction
in (z,y) = (0,0) (from
Kuhlmann et al., 1997).

narrow band around k = 4 for a whole set of unstable modes. Naturally, the
phase velocity w/k of the unstable modes increases as ¢ increases from 0 to
3m/8.

6.2 Two-Sided Lid-Driven Cavity

The interest in double-lid-driven cavities not only derives from the non-
uniqueness of the two-dimensional flow (Sec. 5.2). The system also provides
insight into flow instabilities due to the interaction of two vortices confined to
a rectangular domain. The perhaps most interesting case is the elliptic insta-
bility. The instability can arise when a vortex is strained which, for bipolar
strain, makes the streamlines in the vortex core elliptic (similar as in fig.
11a, middle). Note the scaling and definitions in (2b) and fig. 1b are used for
two-sided driving. The strain can be due to the induced flow caused by the
vorticity of other vortices, or by confinement effects due to the boundaries.
The mechanism of the instability can be explained in terms of a resonance
among two different three-dimensional Kelvin waves traveling about the vor-
tex, where the resonant amplification is communicated by the strain field
as part of the two-dimensional basic flow (Kelvin, Lord, 1880; Moore and
Saffman, 1975; Eloy and Le Dizes, 2001). For the elliptic instability of a
single strained vortex in an unbounded domain, see Pierrehumbert (1986),
Bayly (1986), Waleffe (1990), Huerre and Rossi (1998) and Eloy and Le Dizes
(2001).

The elliptic instability can arise in the two-sided lid-driven cavity when
the lids move in opposite directions, generating two co-rotating vortices. In
a certain range of aspect ratios I' the co-rotating vortices either fully merge
to a vortex with elliptic streamlines in the center (fig. 11a, middle), or they
partially merge, creating a free hyperbolic stagnation point in the center
(z,y) = (0,0) of the cavity, surrounded by closed streamlines outside of the
separatrix (fig. 18). Both types of flow are characterized by a bipolar strain
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Fig. 19 Streak lines in the steady cellular flow with four (a) and five (b) convection
cells for I' = 1.96, A = 6.55 and anti-parallel wall motion with Re; = Rez = 700
(Blohm and Kuhlmann, 2002). Top and bottom boundaries of each figure represent
the lids moving in and out, respectively, of the plane. The cavity end walls (z = +41/2)
are located at the left and the right sides of the figure. The two bright spots in the
center and to the right are hot film probes flush mounted to the wall. Equivalent
flows which are phase shifted by © (Az = 7 /k, width of one cell) are not shown.

field with the strain rate being smaller (elliptic point) or larger (hyperbolic
point) than the rotation rate of the flow at (x,y) = (0,0).

The elliptic instability (of type E2, see fig. 20 below) in two-sided lid-
driven cavities was first reported by Kuhlmann et al. (1997) for I" = 1.96 at
which the strain in the center of the cavity is so strong that a free hyperbolic
stagnation point arises (fig. 18). Note the flow is still a strained vortex, re-
sulting from a merging of the two vortices driven by each of the moving walls,
since closed streamlines arise outside of the separatrix. For periodic boundary
conditions in z and anti-parallel wall motion with Re := Re; = Res the in-
stability arises at a relatively small Reynolds number Re, = 257 (Kuhlmann
et al., 1997; Albensoeder and Kuhlmann, 2002a), which is consistent with the
experimental value of Re. = 275 which was obtained for a the 4-cell flow in
a cavity with (I, A) = (1.96,6.55) (Blohm and Kuhlmann, 2002). Streaklines
of the steady nonlinear four-cell flow which originates from the elliptic insta-
bility are shown in fig. 19a for Re = Re; = Rey = 700. The steady cuboidal
cellular flow is very robust and not much affected by the lateral walls. The
cells become time-dependent only at Re ~ 850, the exact value depending on
the aspect ratio I and the number of cells (Blohm and Kuhlmann, 2002).
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Fig. 20 Critical Reynolds numbers Re. (envelope of the full lines) and wave num-
bers k. (dotted lines) as functions of the aspect ratio I'. The dashed line indicates
the existence range of multiple (three) two-dimensional solutions (see section 5.2).
Experimental critical data for Re. ({) and k. (O) have been taken from Blohm et al.
(2001). The figure is reproduced from Albensoeder and Kuhlmann (2002a).

6.2.1 Linear Stability Boundaries

The linear stability of the two-dimensional double-lid-driven cavity flow as
function of I" for anti-parallel wall motion with equal speed (Re = Re; =
Rey) was investigated by Albensoeder and Kuhlmann (2002a). The critical
curve shown in fig. 20 (full line) exhibits a rich behavior. All instabilities are
stationary. The aspect ratio ranges for which the elliptic instability mecha-
nism (E1,E2), a centrifugal mechanism (C), and a quadripolar (Q) instability
mechanism?® dominates are indicated on top of the figure. In addition to the
critical wave numbers (dotted lines) experimental results of Blohm et al.
(2001) are shown as symbols. The stability analysis is complicated by the ex-
istence of multiple basic states (Sec. 5.2). Their range of existence is indicated
by dashed lines in fig. 20.

For small aspect ratios the co-rotating vortices due to each moving lid
merge to form a single strained vortex. This vortex is unstable to the elliptic
instability (type E1). In the extreme case of shallow cavities with I < 1 and

3 Like the elliptic instability, the quadripolar instability is due to a Kelvin-wave
resonance, communicated by a quadripolar strain field (Eloy and Le Dizes, 2001; Al-
bensoeder and Kuhlmann, 2002a). Since the resonance condition in the ideal case of
a columnar vortex (see e.g. Chandrasekhar, 1961) can only be satisfied for asymptot-
ically large wave number k, the critical wave number in the lid-driven cavity flow is
quite large: k. ~ 15 (see fig. 20).
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Fig. 21 Basic-state streamlines (full lines), critical mode (arrows) and local energy
production rate (color) at the critical Reynolds number for (a) antiparallel wall motion
and I' = 0.2 (Re. = 577.8, k. = 7.578, mode E1/E{) (Albensoeder and Kuhlmann,
2002a) and (b) for parallel wall motion and I" = 0.3 (Re. = 547.6 + 3.7, k. =
9.018 4+ 0.005, mode C?) (Albensoeder and Kuhlmann, 2002b). The fields are shown
in a plane z = const. in which the total local production rate takes its absolute
maximum. In (a) the local production rate —D~1v'u’dvg/Ox is shown. In (b) the
total local production rate —D~ 1w’ - [u’ - Vo] is shown (w’ = 0 in this plane).

Re; = Rey the flow far from the moving walls approaches plane Couette flow
with zero mass flux through any plane y = const. The three-dimensional in-
stability is excited near both symmetrically located turning zones and midway
between the two moving walls in the region where the streamline curvature
is the highest. As a result of the instability long streaks in y direction are
formed. Figure fig. 21a shows the basic flow, the critical mode and the total
local energy production rate (color) for I" = 0.2.

The critical curve (full line) and the critical wave number (dashed line)
for parallel wall motion (Re = Re; = —Rey) are shown in fig. 22. The
critical curve is continuous for all aspect ratios and the critical mode was
denoted C? (centrifugal, parallel wall motion) (Albensoeder and Kuhlmann,
2002b). Plane Poiseuille flow with zero mass flux is approached in the bulk
for shallow cavities (I" — 0). In this situation the instability is triggered at
the downstream end of the moving walls where the basic flow turns inward
and returns to the bulk in direction opposite to wall motion. An example is
shown in fig. 21b.

In addition to the three-dimensional instability boundary, also the two-
dimensional stability boundary (k = 0) is shown in fig. 22 as a dotted line.
It corresponds to the reflection-symmetry breaking instability of the two-
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dimensional flow (Sec. 5.2). The two-dimensional finite-amplitude flow with
broken reflection symmetry is not unique within the regions confined by the
dotted lines in fig. 22. Finite-amplitude two-dimensional flows with broken
mirror symmetry exist only within a band of I" (see also fig. 6 of Albensoeder
et al., 2001b).

The linear stability analysis was extended by Albensoeder and Kuhlmann
(2003) to arbitrary Reynolds numbers Re; and Res to find the linear stabil-
ity balloon in the three-dimensional parameter space spanned by Rei, Res
and I'. It is shown in fig. 23. Since the linear stability problem is invariant
under (Rey, Res) — (Rea, Req) and (Rey, Res) — (—Rey, —Res) the stabil-
ity balloon is reflectionally symmetric with respect to the planes Re; = Res
and Re; = —Res. In the limit I" — oo the vortex structures driven by the
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two walls become independent of each other, because the strength of the flow
decays from the moving walls towards « = 0. Therefore, the flow becomes lin-
early unstable whenever one of the two Reynolds numbers exceeds the critical
Reynolds number for an infinitely deep single-lid-driven cavity. For shallow
cavities (I" — 0) the situation is more complicated, because the instabilities
typically involve the turning zones near x = +1/2. Stability boundaries for
various fixed values of I' and arbitrary Reynolds numbers are provided in
Albensoeder and Kuhlmann (2003) and Albensoeder (2004).

The two volumes in the parameter space in which the basic two-dimensional
flow is not unique (Sec. 5.2) are not shown in fig. 23. These regions arise
symmetrically about the planes Re; = Res (antiparallel driving) and about
Re; = —Res (parallel driving). Only the region of non-uniqueness for an-
tiparallel driving (dashed line in fig. 20) collides with the stability balloon.
Finally, owing to the large (three-dimensional) parameter space only little
is known about nonlinear three-dimensional flows for two-sided lid-driven
cavities (see, however Blohm and Kuhlmann, 2002; Romand et al., 2017).

6.2.2 Experimental Stability Results

Some experimental results on the flow stability for large span aspect ra-
tios A are available. These are due to Kuhlmann et al. (1997), Blohm
(2001), Blohm and Kuhlmann (2002) (see fig. 19), Siegmann-Hegerfeld et al.
(2008, 2013), and Siegmann-Hegerfeld (2010). Experimental critical data
(Siegmann-Hegerfeld et al., 2008) are shown in fig. 24 in comparison with
numerical linear stability data in the (Rey, Res) plane. According to Alben-
soeder and Kuhlmann (2003) the instabilities arise due to centrifugal (modes
(), elliptical (modes E) and quadripolar (modes ) instability mechanisms.
The superscripts p and a stand for parallel and anti-parallel wall motion,
respectively. Most experimental data agree with the numerical stability anal-
ysis which is based on a finite-volume code with a resolution of 141 x 141
grid points in the (z,y) plane (Albensoeder et al., 2001a; Albensoeder and
Kuhlmann, 2003). However, for certain modes (C§, Q%) the experimental in-
stability boundaries are lower than the numerical ones. The reason could be
related to a subcritical bifurcation which was also found numerically for the
quadripolar instability mode Q% (Albensoeder, 2004). Moreover, some neu-
tral curves may depend sensitively on aspect ratio I" (see the different curves
in fig. 24b). Also, the curvature of the moving walls which were experimen-
tally realized by rotating cylinders with large radius may have affected the
experimental results.

Apart from the well-known Taylor-Gortler instability for one-sided driving
(mode C% in fig. 24a) and the elliptic instability E{ the two counter-rotating
vortices for symmetrical and parallel driving can become unstable to the C?
mode. This mode is illustrated in fig. 25 which shows streaklines of the steady
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Fig. 24 Experimental critical Reynolds numbers Rez.(Re1) (symbols) for I' = 1 and
A =10.88 (a) and for I' = 0.76 and A = 10.43 (b) according to Siegmann-Hegerfeld
et al. (2008) in comparison with numerical neutral curves for A — oco. The labels
denote different modes (notation of Albensoeder (2004)): CP (4, continuous line in
(a)), Cf (>), C5 and Q* (A, dash-dotted line in (a)), C§ (o, double-dash-dotted
line in (a)) and E{ (H). Open symbols denote Hopf bifurcations. The open squares
(O) are critical data for Re; = 0 of Theofilis et al. (2004) with Res.(I" = 1) = 783
and Regs.(I" = 0.76) = 825 + 10 (from their fig. 14). The neutral curves in (a) have
been calculated for I' = 1, whereas in (b) numerical neutral curves are shown for
I' = 0.725 (dashed lines), I' = 0.75 (continuous lines) and I = 0.787 (dotted lines).
The open diamond in (a) indicates the Reynolds numbers of fig. 25. Straight dotted

lines indicate the limits of parallel and antiparallel wall motion with equal velocity
magnitude.

Fig. 25 Supercritical flow evolving from the CP mode for parallel wall motion with
Res = —Re; = 250, I' = 1 and A = 10.88 (from Siegmann-Hegerfeld et al., 2008).
The walls, located at the top and bottom, move into the plane shown. The flow is

visualized by seeding with aluminum flitter and illumination from the right in the
plane y = 0.

three-dimensional flow for Res = —Re; = 250. The two stationary vortices
in the cavity alternatingly extend and shrink in z direction.
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7 Cuboidal Lid-Driven Cavity Flow

Any experimental realization of a closed cavity flow must have a finite length
L, in spanwise direction. The most natural boundary conditions at z = +4
are no slip boundary conditions (u = 0). These conditions strictly prevent the
existence of a two-dimensional flow. Therefore, the flow in cuboidal cavities
must be three-dimensional, even for very small Reynolds numbers. Here we
only consider the single-wall motion such that the scaling (2a) and fig. la

apply.

7.1 End-Wall Effects

The presence of end walls suppresses the main swirling motion in their vicinity
and a velocity component w in spanwise direction is created whose strength
decays towards the bulk. This is similar as in the case of an unbounded
vortex with constant vorticity perpendicular to a wall for which Bédewadt
(1940) has provided similarity solutions for the structure of the boundary
layer near the wall. The secondary flow, involving a non-zero wall-normal
velocity component w, decays exponentially with the distance from the wall.
For the Bodewadt as well as for the cavity flow, the primary vortex flow
in the (z,y) plane induces a secondary flow due to an imbalance between
pressure forces and centrifugal forces. As a result the wall-induced secondary
flow is directed 'inwards’ toward the apparent center of the primary vortex
in the vicinity of the end walls. The reduction of the circulation and the
secondary flow effect, which leads to a spanwise motion, have experimentally
been investigated for different small span aspect ratios A € [0.25, 1] by Prasad
and Koseff (1989), albeit for relatively high Reynolds numbers larger than
Re = 3200.

Since the secondary three-dimensional flow in a cuboidal cavity decays
away from the end walls, the three-dimensionality of the flow may be ne-
glected in the bulk if the span length A is sufficiently large. In that case
the three-dimensional instabilities considered in section 6 for an infinitely
extended system may be realized in good approximation. However, for short
systems with A = O(1) the end-wall-induced secondary flow has a profound
influence and makes the flow three-dimensional for any Reynolds number.

As the strength of the circulation of the main (primary) flow is significantly
reduced by the no-slip end-wall conditions, the circulation in the symmetry
plane z = 0 of a cubic cavity (I' = A = 1) is less than the one in a cavity
with I" = 1 and A = 3 (Koseff and Street, 1984b). The vortices generated
near the end walls and the global transport due to the secondary flow have
been investigated by Chiang and Sheu (1997) and Chiang et al. (1997a).
According to Albensoeder et al. (2001a) the reduced strength of circulation
prevents Taylor—Gortler vortices within a certain distance Az from the end
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Fig. 26 Taylor—Gortler vortices for I' = 1 and Re = 850 > Re2® = 786. (a) For
A = 6.55 the vortices are steady (from Albensoeder et al., 2001a). (b) For A = 10.88
the vortices drift towards both end walls (from Siegmann-Hegerfeld et al., 2008). The
moving lid is located at the bottom of each image and it moves into the plane. The
flow is visualized using aluminum flakes and illumination in a layer close to the wall
at z = —0.5 (upstream of the moving lid). Note the regions adjacent to the end walls
are free from Taylor—Gortler vortices.

walls for Reynolds numbers slightly larger than the critical Reynolds number
Reg® for an infinitely extended system. This is evident from fig. 26 showing
Taylor—Gortler vortices in cavities with I" = 1 and A = 6.55 (a) and A4 = 10.88
(b). At Re = 850 the vortices are steady for A = 6.55, while the vortices drift
towards the end walls for A = 10.88. As the Reynolds number is increased
the Taylor—Gortler vortices also invade the previously nearly structureless
regions near the end walls (in fig. 26) and the vortices start to drift also for
A = 6.55. Obviously, the inhomogeneity in z of the basic flow and the end-
wall-induced secondary flow make the Taylor—Gortler vortices travel towards
the end walls, with the speed of propagation increasing as the end walls
are approached. Such motion of Taylor—Gortler vortices has also been found
numerically by Chiang et al. (1996) for Re = 1500 and A = 3.

Figure 27 shows a velocity profile of v in the final state of a three-
dimensional numerical simulation (Albensoeder and Kuhlmann, 2006) for
A = 6.55 and Re = 850 (full line) corresponding to the flow shown in fig.
26a. The simulation confirms the localization of the steady Taylor—Gértler
vortices in mid-cavity. For comparison, the velocity profile from a nonlinear
simulation using periodic boundary condition is shown for the same Reynolds
number and a wavelength A = 0.407 corresponding to the critical wave num-
ber k. = 15.4 of the linear theory (see Sec. 6.1.1). The wavelength and the
peak amplitude of the localized flow pattern agree very well with those for
the periodic Taylor—Gortler flow.

The onset of Taylor—Gortler vortices in cuboidal cavities with I' = 1
and moderately large A depends both on the Reynolds number and the as-
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Fig. 27 Velocity profile —u(—0.337, —0.263, z) for Re = 850 and I" = 1. Shown are
numerical results of Albensoeder and Kuhlmann (2006) for a finite-length cavity and
no-slip end walls for A = 6.55 (full line) and for periodic boundary conditions and
A =0.407 (dotted line).

pect ratio. Numerically, Albensoeder and Kuhlmann (2006) found: When
the Reynolds number is reduced quasi-statically for A = 6.55 the Taylor-
Gortler vortices break down at Re = 835 &£ 5, in rough agreement with the
experimental value Re = 810 & 15 found by Albensoeder et al. (2001a). The
value Re = 835 is only =~ 6% larger than the critical Reynolds number Re2®
for periodic boundary conditions. Similarly, if the span aspect ratio A is
reduced quasi-statically for Re = 850 the Taylor-Gorler vortices vanish at
A.(Re =850) =6.14+0.1.

For the larger aspect ratio A = 10.88 and for a square cross section (I" = 1)
Siegmann-Hegerfeld (2010) finds Taylor—Gortler vortices drifting from the
center z = 0 towards the end walls of the cavity immediately from the onset
of Taylor—Gortler vortices. This is different form the result for A = 6.55 for
which steady localized Taylor-Gortler cells were found numerically and ex-
perimentally for Re = 850. For A = 10.88 new cells are continuously created
at z = 0 and annihilated before reaching the end walls at z = £4/2 (see the
empty regions in fig. 26). The drift velocity of the Taylor—-Gortler vortices for
A = 10.88 depends on the Reynolds number, but it is of the order of O(1)
(Siegmann-Hegerfeld, 2010). At Re ~ 103, just before time dependence sets
in, Taylor—Gortler vortices fill the whole span of the cavity.

The complicated behavior of the system at moderate span aspect ratios
is also underlined by the investigation of Aidun et al. (1991) for I" = 1 and
A = 3. Upon a quasi-steady increase of Re they have observed the basic flow
to remain stationary up to Re =~ 875 4 50, beyond which the flow became
oscillatory and increasingly complex. They also found multiple steady states
in form of cellular patterns at Re < 500 which seem to be accessible only by
finite-amplitude perturbations of the basic flow. The qualitative nature of the
reported behavior indicates there is still much room for precision experiments
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to clarify the properties of the system under a strong lateral confinement.
Moreover, as discussed by Albensoeder et al. (2001a), the through flow due
to the unavoidable gaps between the stationary walls and the moving lid can
change the bifurcation scenario.

7.2 Cubic Lid-Driven Cavity

As the aspect ratio A is further reduced, the end-wall induced three-dimensional
flow is important in the whole cavity, and for A = 1 the periodic Taylor—
Gortler instability is absent. Owing to its simple geometry the cubic cavity
I' = A = 1is of particular interest as a benchmark for three-dimensional flows
(Albensoeder and Kuhlmann, 2005), but also regarding the flow physics. Due
to the symmetry of the geometry and boundary conditions the flow at lower
Reynolds numbers is reflection symmetric with respect to the midplane z = 0
(Z5 symmetry), satisfying

(u, v, w)(x,y,2) = (u,v, —w)(z,y, —2). (18)

The full three-dimensional nature of the flow is illustrated in fig. 28 which
depicts wall streamlines for Re = 400 on all stationary walls. The spiralling-
in motion on the end walls DCGH and FF BA and the spanwise dependence
of the separation lines marking the corner vortices are clearly seen.

As the Reynolds number is increased, it is expected that the reflection
symmetry will be lost, the flow become time-dependent, or both. This prob-
lem was first tackled by Feldman and Gelfgat (2010) who, using finite-volume
numerical simulations, found a subcritical oscillatory instability. The critical
Reynolds number and oscillation frequency were determined by extrapola-
tion to zero of the subcritical decay rate of the characteristic oscillations.
Furthermore, the supercritical oscillatory flow was found to break the re-
flection symmetry with respect to the midplane z = 0. Using a the same
subcritical extrapolation, but a more accurate spectral method, Kuhlmann
and Albensoeder (2014) could pinpoint the critical data to Re. = 1919.51
and w./Re = 0.58611.

For slightly sub- and supercritical conditions, | Re— Re.|/Re. < 1, the am-
plitude of oscillation saturates and remains constant for a very long time. This
allows to construct a bifurcation diagram A, (Re) by fitting a fourth-order
polynomial to the dependence Re(A,,), where A,, is the saturated amplitude
of the fundamental temporal harmonic oscillation of the spanwise velocity
component w(xg) evaluated at (xo, Yo, 20) = (—0.32139, —0.35355, 0.086824).
The fit, shown in fig. 29, indicates the narrow range of hysteresis in Re.

Let us call LC1 (limit cycle 1) the solution of the Navier—Stokes equations
(1) which bifurcates backwards at Re = 1919.51 (fig. 29). LC1 is symmetric
with respect to the mid plane. Thus it cannot explain the broken symmetry
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Fig. 28 Wall streamlines for cubical cavity flow and Re = 400 according to Sheu
and Tsai (2002). Shown are the stationary walls which result when removing the
lid EFGH and looking down on the bottom wall ABC'D with the side walls being
unfolded. The lid motion (not shown) is from left to right.

observed by Feldman and Gelfgat (2010) in their simulations. The reason is
the dynamics is more complex. As an example, the time dependence of the
total kinetic energy per mass Eii, = (1/2) fv u?dV is shown in fig. 30 for
Reynolds number Re = 1921. Starting with the basic flow for Re = 1918
the Reynolds number is increased to Re = 1921 > Re. at t = 0. Only
at t ~ 12 the symmetric oscillations of LC1 are fully developed. After a
long period of constant-amplitude oscillation, however, a burst occurs at ¢t ~
18.5 which involves breaking of the reflection symmetry of LC1. Therefore,
LC1 is unstable to symmetry-breaking perturbations. But the asymmetric
burst does not lead to an asymmetric flow state with saturated amplitude.
Instead, the flow returns close to the unstable steady basic state from which
the symmetric oscillations eventually grow again. This scenario repeats itself
in an intermittent fashion leading to a chaotic dynamics (Kuhlmann and
Albensoeder, 2014; Loiseau et al., 2016).

By imposing a symmetry boundary condition on the midplane z = 0
Loiseau et al. (2016) have been able to identify three different periodic solu-
tions for Re above the onset of time-dependence. The corresponding phase
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Fig. 29 Bifurcation diagram showing the amplitude A,, (diamonds) of the
fundamental-frequency oscillation of w(—0.32139, —0.35355, 0.086824) as a function
of the Reynolds number. The line is a fit to Re(Aw) — Rec = aA2 + bA% (a =
—0.0189977, b = 6.64421 x 10~%). The circle is the linear stability boundary and
the asterisk indicates the cyclic-fold bifurcation point (Re, A,) = (1906.0, 37.81).
Adapted from Kuhlmann and Albensoeder (2014).

portraits in the plane spanned by the dissipation D = [i,(V x «/)?dV and
the production P = — [, u’ - [(u' - V)ug]dV are shown in fig. 31, where ug
denotes the unstable basic flow and ' the small but finite amplitude fluc-
tuations. The periodic solutions shown are: (a) the (unstable) steady basic
state (BS, dot at D = P = 0), (b) a limit cycle LC1 with low production
and dissipation (blue) which bifurcates from the linear instability of the ba-
sic state (fig. 29), and (c¢) a limit cycle LC2 associated with large production
and dissipation (red) which is stabilized by the symmetry constraint. Loiseau
et al. (2016) explain the intermittent behavior as a wondering of the system
in phase space between these invariant objects, which are all unstable. Figure
32 shows snapshots illustrating the oscillatory flow in a state near LC1 (a,b),
near LC2 (c¢), and during the asymmetric breakdown of LC2 (d) after which
the flow returns close to the steady basic state.

As suggested by Loiseau et al. (2016) the intermittent behavior can be bet-
ter understood by identifying the different unstable solutions of the Navier—
Stokes equations. Lopez et al. (2017) solved the Navier—Stokes equations in
the full three-dimensional space and in the subspace of functions with re-
flection symmetry about the midplane z = 0. The unstable basic state was
computed using selective frequency damping (Sec. 4.1.2), while unstable os-
cillations, corresponding to saddle limit cycles, were accurately located and
tracked as function of Re by either restricting the solution to a symmetric
subspace (LC2) or by using an edge state technique (Schneider et al., 2008)
(LC1). The resulting bifurcation diagram is shown in fig. 33.
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Fig. 30 Total kinetic energy Fyin = (1/2) fv u?dV for Re = 1921 as a function
of time (Kuhlmann and Albensoeder, 2014). Note the varying durations of the time
periods the system stays close to the basic state (Fxin/Re? &~ 0.01913), stays close
to moderate-amplitude symmetric oscillations (they appear as wide black horizontal
bars on the long time scale shown), and of the bursts at the end of the oscillatory
period (large-amplitude excursions).

Fig. 31 Unstable limit i x 10%
cycles in the intermittent Re?
cavity flow for Re = 1930

adapted from Loiseau

et al. (2016): Basic state
BS (small dot at (0,0)),

LC1 (blue), and LC2 0

(red). 0 (P/Re2) x 104 2

According to Lopez et al. (2017) the steady basic flow (BS) becomes un-
stable to a symmetric limit cycle LC1 (frequency ws) through a backward
bifurcation at the Hopf bifurcation point Hy (see also fig. 29). After turning
forward at the cyclic-fold bifucation point C'F} the solution branch becomes
stable but rapidly changes to unstable due to a Neimark—Sacker bifurcation
at NSi. The bifurcating solution QPs is quasi-periodic, symmetric and in-
volves a frequency which is about four times smaller than w;. On the other
hand, the quasi-periodic solution branch QPs is connected at NSy with the
lower-branch of another subcritical limit cycle LC2 which bifurcates from
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(a) LC1 (b) LC1

Fig. 32 Vortex structures in a lid-driven cube for Re = 1921, visualized by the @
criterion (Jeong and Hussain, 1995). Shown are isosurfaces of @ = 0. The moving
lid is located on the rear side of the cube shown, and it moves downward. (a,b)
Snapshots during different instants of the symmetric oscillations corresponding to
LC1. (c) Snapshot of the stronger symmetric oscillations near LC2. (d) Snapshot of
an asymmetric vortex structure during the breakdown of LC2. All figures are taken
from Kuhlmann and Albensoeder (2014).

the basic flow at a higher Reynolds number at the Hopf bifurcation point
H, and with frequency ws. The upper-branch of the limit cycle LC2 is stable
in the symmetric subspace and can thus be computed easily (Lopez et al.,
2017), but it is unstable to symmetry breaking perturbations. Therefore, for
Re > Re(NSy), small reflection-symmetric perturbations of the flow corre-
sponding to LC1 grow slowly (the growth rates are quite small) in a quasi-
periodic fashion to approach the upper branch of LC2. However, since LC2
is unstable to perturbations which break the reflection symmetry, the flow
state is repelled from LC2 involving large-amplitude symmetry-breaking flow
structures (burst). Since no stable states seem to exist for Re > Re(NS7) the
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Fig. 33 Bifurcation diagram in terms of the standard deviation o of the kinetic en-
ergy (upper panel) and oscillation frequency (lower panel) as functions of the Reynolds
number Re (adapted from Lopez et al., 2017). The small numbers shown indicate the
number of unstable direction from the solution in the symmetric phase space. See
text for further explanations.

flow remains chaotic in the fashion illustrated in fig. 30. However, the period
of time which the system stays close to LC1 or LC2 shrinks as Re increases
rendering the system fully chaotic.

The critical Reynolds numbers Re. = 1929 for the bifurcation point H;
obtained by Lopez et al. (2017), using a spectral truncation N = 48 and a
smoothing of the corner singularity (Sec. 3.3.5), and the value Re, = 1927
(Richardson extrapolated 1914) obtained by Feldman and Gelfgat (2010),
using a multi-grid finite-volume technique, differ only slightly from Re. =
1919.51 obtained by Kuhlmann and Albensoeder (2014) for a spectral trun-
cation order N = 128 and a singularity subtraction method (Sec. 3.3.3).

The subcritical transition to oscillatory flow has been confirmed experi-
mentally by Liberzon et al. (2011). They find the lowest Reynolds number
at which oscillations are sustained and the corresponding frequency in rough
agreement with the numerical results for LC1. The largest fluctuations of
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the oscillatory flow in the cavity midplane z = 0 were detected in the region
between the main vortex and the stationary walls, a behavior also found nu-
merically. But experimental imperfections seem to have prevented uncovering
the intermittent scenario found numerically.

7.3 Diagonal Lid Motion

The lid-driven flow in a cuboid whose lid moves diagonally has received some
attention. The flow is conceptually very similar to the classical lid-driven
cuboidal cavity flow (Sec. 7.2). In view of the complex dynamics in the clas-
sical configuration it is of interest to identify similarities and differences. The
spanwise periodic version of this problem has been considered by Theofilis
et al. (2004) (Sec. 6.1.3).

The diagonally-driven cuboidal cavity was introduced by Povitsky (2005)
as a separated flow in which the flow transverse to the lid motion is particu-
larly strong (see also Povitsky, 2001). The steady flow is characterized by a
large-scale vortex motion in the diagonal plane. The flow exhibits a reflection
symmetry with respect to the diagonal plane, as in the classical case. To illus-
trate the strong three-dimensional character of the flow in a cube (I' = A = 1)
the velocity vector field is shown in fig. 34. In the diagonal (symmetry) plane
the flow at Re = 700 (fig. 34a) turns downward in the 90-degree wedge. Due
to the stronger viscous effect the downward motion experiences the flow in the
wedge separates earlier than in the classical configuration, and the separated
flow readily turns backward. For the larger Reynolds number Re = 2000 (fig.
34b), close to the onset of time dependence, the flow has developed much
more fine structure. In the midplane y = 0 parallel to the moving wall the
separated flow from the downstream wedge (between vortices labelled 3) is
opposing the flow driven by the moving wall which has become part of two
large scale vortices (indicated by labels 2) due to the strong three-dimensional
effect.

Feldman (2015) investigated this flow with regard to the onset of time
dependence (see also Feldman and Gelfgat, 2011). As for the classical case,
in which the lid moves parallel to the edges, the first bifurcation is found to
be subcritical with a Hopf bifurcation point at Re. = 2329 and a cyclic fold
bifurcation point at Re = 2302. A more accurate critical Reynolds number
Re. = 2320 with w./Re = 0.249 was obtained by Richardson extrapolation.
According to Feldman (2015) the perturbation flow has a complicated struc-
ture reflecting the complex structure of the basic flow. The essential feature of
the oscillatory perturbation flow seems to be a streamwise vortex centered in
the midplane whose sense of rotation is alternating with time. Different from
the classical case, the upper-branch oscillatory flow violates the reflectional
symmetry with respect to the diagonal plane, but satisfies the H symmetry
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Fig. 34 Projected velocity vector field of the steady basic flow in a cube for diagonal
lid motion shown (a) in the diagonal (symmetry) plane for Re = 700 and (b) in the
midplane y = 0 parallel to the moving lid for Re = 2000 (from Povitsky, 2005). The
lid in (a) is located at the top and it moves from left to right. In (b) the lid moves
diagonally from the bottom right to the top left (long arrow). The labels enumerate
the vortices.

(@, 0, w)(&,7,2,t) = (4,0, —w)(&,7, —2,t+T/2), (19)
where & and ¢ = y are the two orthogonal coordinates in the diagonal plane, 2
the coordinate perpendicular to the (Z,y) plane and T = 27 /w is the period
of the flow. The velocities (@, ?,w) denote the fluctuating velocity compo-
nents in the respective (&, g, ) directions. According to Feldman (2015) the
supercritical H-symmetric oscillatory flow is stable, different from the Zs-
symmetric flow of LC1 in the classical case.

In yet another variant of cavity flows two facing sidewalls move tangentially
and parallel to the edges, but in mutually orthogonal directions. According
to Povitsky (2017) the two primary vortices, which are essentially oriented
orthogonal to each other, lead to a particularly large helicity in the flow which
is expected to be beneficial for mixing configurations.

8 Streamline Topology and Mixing

The ease by which the lid-motion can be controlled in experiments, also for
time-dependent driving by prescribing any lid-velocity protocol U(t), makes
the lid-driven cavity a good test bed for Lagrangian transport. The motion
of a fluid element is governed by the advection equation

X = u(X, 1), (20)
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where X = (XY, Z) is the position vector of the fluid element, u = (u, v, w)
the velocity-vector field of the flow, and the dot denotes the material time
derivative.

For a two-dimensional flow a stream function ¢ can be defined such that

(20) results in
o v o

oy " X
If, moreover, the flow field [u(X,Y),v(X,Y)] is steady the stream function
P(X,Y) takes the role of the Hamiltonian of a dynamical system with one
degree of freedom; the streamlines represent trajectories in a two-dimensional
phase space spanned by X and Y. The integrable motion in the two-sided
lid-driven cavity in the Stokes flow limit has been investigated by Kelmanson
and Lonsdale (1996) who focused on the eddy genesis when changing the
aspect ratio. Further studies of the Stokes flow for two-sided driving are due
to Giircan (2003).

The transport is more interesting when the driving becomes time-dependent.
In this case the phase space is three-dimensional and the system is non-
integrable even in the Stokes-flow limit. As a characteristic property, regular
(quasi-periodic) trajectories can co-exists with chaotic ones. Ottino et al.
(Chien et al., 1986; Ottino et al., 1988; Franjione et al., 1989; Ottino et al.,
1992; Liu et al., 1994a,b) were among the first to investigate the mixing
properties in closed boundary-driven systems, focusing on creeping flow con-
ditions. The experimental setup of Leong and Ottino (1989) consisted of a
double-lid-driven cavity with I" = 1/1.67 (see fig. 1b), open in spanwise (z)
direction and A large so as to render the flow essentially two-dimensional.
The moving boundaries were realized by belts that slide parallel or antipar-
allel to each other. Marking fluid elements along a line parallel to the x axis
initially, the tracers are advected by the flow. After a certain period of time
they form patterns, examples of which are shown in figs. 35a—c for constant
wall velocities. The line of marked tracers roles up in a regular fashion. When
the wall velocities Uj 2(t) become time-dependent a memoryless sequence of
creeping flows is realized, due to the instantaneous character of the Stokes
flow. The sequence can range among all possible combinations of the two
independent belt velocities: single lid motion (fig. 35a), double anti-parallel
motion (fig. 35b) and double parallel lid motion (fig. 35¢). Even if the flow is
a sequence of instantaneous Stokes flows with regular streamlines, assigning
a time-dependent protocol to the two lids may result in chaotic advection of
fluid elements. The resulting chaotic mixing is quite striking if one consid-
ers that the streamlines are defined instantaneously for each time-step and
cannot be chaotic since their phase space is two-dimensional.

For a continuous chaotic dynamics the phase space must have at least three
dimensions. It is well understood that the trajectory of a fluid element can be
chaotic when it is governed by (20) (Aref, 1990). For the Stokes flow in the
two-sided cavity the non-linear equation (20) reduces to a two-dimensional

=X = (21)
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Fig. 35 Mixing in a two-dimensional lid-driven cavity. Shown is the evolution of a
line of tracers initially located along the z axis (vertical line) for (a) steady single
lid motion, (b) steady parallel lid motion, (c) steady opposing lid motion, and (d)
discontinuous opposing lid motion. Images are taken from Leong and Ottino (1989).

time-dependent dynamical system (three dimensions in phase space) which
allows for chaotic mixing, an example of which is shown in fig. 35d.

The classic kinematic scenario deals with hyperbolic systems* dominated
by the presence of a chaotic saddle, whose chaotic advection stretches and
folds the flow at an exponential rate down to the Batchelor scale (Batche-
lor, 1959), at which stretching and molecular diffusion balance. However, this
picture is typically complicated by the presence of walls, which destroy the
hyperbolicity of the system leading to a decrease of the mixing rate from the
ideal exponential to a much slower power-law rate. This reduction is caused
by the entrainment of unmixed material from the near-wall regions (Thif-
feault et al., 2011). Hence, apart from the relevance of Ottino’s results in the
context of laminar mixing and microfluidics, where chaotic mixing is the only
efficient way to achieve a certain large-scale homogeneity of the transported
quantity, studying chaotic advection in closed systems is also intended to
provide further insight into the mixing properties of non-hyperbolic systems.

Further efforts in studying mixing in periodically-driven two-dimensional
cavities were made by Anderson et al. (2000) who characterized the mixing
properties of the flow by means of numerical simulations including inertial
effects. They focused on the role of Kolmogorov-Arnold-Moser (KAM) tori,
which constitute non-chaotic mixing regions in the flow, and discovered that
an antiparallel motion of the walls is the only motion which enhances mix-

4 A dynamical system is called hyperbolic in a linear sense when the Jacobian deter-
mining the local linearization of the flow admits non-imaginary eigenvalues.
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ing. Other investigations employing the two-sided cavity are concerned with
particulate flows (e.g. Xu and Gilchrist, 2010), where the kinematic template
of the flow, i.e. the geometry made by all paths of all fluid elements (Aref,
1990), is coupled with the motion of particles. Surprisingly, when the effec-
tive viscosity of the mixture depends on the concentration of the particulate
phase an increase of the chaotic advection due to the flow kinematics only
(neglecting the particulate phase) does not necessarily enhance the overall
mixing of the particle-laden flow. The reason is the mixing can be strongly
counteracted by shear migration of particles.

The time-periodic double-lid-driven cavity has been extended numerically
and experimentally by Anderson et al. (1999, 2006). In their experimental
study, Anderson et al. (2006) allow the two sliding lids to move tangentially
in both, the z- and the z-direction. They confirmed their previous findings
about periodic points and the associated poor mixing in their vicinity also
for three-dimensional time-periodic flows. It is, however, very challenging
to conduct a thorough study of mixing in time-dependent three-dimensional
cavities. Even stationary flows can represent an intriguing dynamical systems.

As shown by Bajer (1994) incompressible steady three-dimensional flows
represent piecewise Hamiltonian systems of 1.5 degrees of freedom. Their
kinematics requires a three-dimensional phase space. Therefore, incompress-
ible steady three-dimensional flows typically exhibit chaotic transport. Since
pathlines and streamlines coincide for three-dimensional steady flows, we dis-
cuss the streamline topology in the following.

Chiang et al. (1996, 1997b, 1998) and Sheu and Tsai (2002) were among
the first to compute streamlines in genuinely three-dimensional cavity flows.
They characterized the main vortex, computed streamtubes of the flow, and
related these to the critical topological objects along the cavity walls and in
the (mirror-symmetry) midplane of the cavity (z = 0). Attention was focused
on the separation and reattachment streamlines as well as on the saddle foci
on the walls and on the mirror-symmetry plane. Specifically, Sheu and Tsai
(2002) computed the distribution of degenerate streamlines on the five steady
walls in a cubic single-lid-driven cavity for Re = 400 (see fig. 28). They further
characterized the degenerate nodes and saddles on the stationary walls by
means of second-order terms of the local Taylor expansion of the velocity
field. Additional topological analyses of the streamlines in the corner eddies
were carried out by Chiang et al. (1998) and Shankar and Deshpande (2000).

The investigations of Iwatsu et al. (1989), Ishii and Iwatsu (1990), Ishii and
Adachi (2006, 2010, 2011) and Ishii et al. (2012) had a different focus. They
characterized the Lagrangian flow topology by means of Poincaré sections of
streamlines and identified regular (KAM tori) and chaotic regions of the flow.
By means of compact high-order finite differences they simulated the steady
three-dimensional flow in cavities with A = 6.55 (the span aspect ratio in
the experiments of Kuhlmann et al., 1997) and I = {0.5,1,1.5}. For Re €
[100,500] they identified a 3:1 resonance phenomenon of the main KAM torus.
Ishii and Adachi (2011) characterized the resonance by means of a normal-
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Fig. 36 Regular and chaotic streamlines of the steady flow in a single-lid-driven
cube (I' = A = 1) for Re = 200. (a) Poincaré section on the plane z = 0 displaying
chaotic (gray dots) and regular (black markers) streamlines. Diamonds indicate the
closed elliptic point in the Poincaré plane, corresponding to closed streamlines. (b)
Three-dimensional reconstruction of the outermost surfaces of the main KAM torus
T, (dark grey) and the 7-periodic KAM torus T+ (light grey), as well as the 4-periodic
closed streamline L4 (line). Since the flow is mirror symmetric with respect to z = 0,
only half of the cavity is depicted in (a) and (b).
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Fig. 37 Chaotic (gray) and regular streamlines (purple) in a periodic double-lid-
driven cavity with period A = 2.73 for I' = 1.7 and Re = 400. (a) Poincaré section
on the plane at * = 0. Diamonds denote elliptic points corresponding to closed
streamlines. (b) Three-dimensional reconstruction of the outermost surfaces of the
two point-symmetric period-1 KAM tori (from Romané et al., 2017).
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form Hamiltonian as proposed by Arnold et al. (2007). Similar topological
studies were carried out for A = 1, I' = {0.4,0.6,1,1.4}, and for Re €
[100,400] (Ishii et al., 2012), for which quite complex flow kinematics were
found. Figure 36 shows an example for the coexistence of regular and chaotic
streamlines in the cubical single-lid-driven cavity for Re = 200. The steady
flow has been computed, for reasons of demonstration, using the spectral
element code NEK5000 with 202 7th-order spectral elements. The streamlines
were integrated by a Runge-Kutta Dormand-Prince method with relative
and absolute error tolerances of 10~7. For further mathematical details on
chaotic and regular motion and on the resonance phenomenon the reader
is referred to the KAM and Poincaré-Birkhoff theorems (Cheng and Sun,
1989a,b; Mezi¢ and Wiggins, 1994; Broer et al., 2009).

The topology of the flow in a periodic double-lid-driven cavity with I" = 1.7
(an example is shown in fig. 37) has recently been investigated by Romand
et al. (2017). For this aspect ratio, spanwise wavelength A = A\, = 2.73 and
for Re; = Res = Re € [Re., 700], where Re. = 211.53 is the critical Reynolds
number, the three-dimensional flow is steady in form of periodic cuboidal cells
(mode E2 of fig. 20, see also fig. 19). The three-dimensional cellular flow is
robustly point-symmetric with respect to the center of the cell and mirror-
symmetric with respect to the periodic cell-boundaries at z = +\./4. In this
flow Lagrangian chaos sets in globally immediately above the linear stabil-
ity threshold at which the translation symmetry in z is broken. The sudden
appearance of global chaos can be traced back to the breakup of the hetero-
clinic connection between a spiralling-in and a spiralling-out saddle focus in
the supercritical flow and to the abundance of saddle foci with chaotic dy-
namics right above the critical onset. Increasing the Reynolds number, some
of the saddle foci vanish and KAM tori are born and expand until Re ~ 400,
beyond which increasing inertial effects smoothly drive the system towards
kinematically more chaotic flows. Figure 37a shows a Poincaré section of the
streamlines at x = 0 for Re = 400. Gray dots indicate chaotic streamlines,
whereas purple dots refer to regular streamlines. The point-symmetric cou-
ple of KAM tori, shown in fig. 37b for Re = 400, shrinks for larger Reynolds
numbers until, for Re € (500,700), a 2:1 resonance occurs, splitting each of
the two KAM tori into a period-1 and a period-2 torus, with the period-2
torus winding about the period-1 torus.

9 Turbulent Flow

Motivated by the early experiments of Koseff et al. (see, e.g., Koseff and
Street, 1984a) benchmark computations using different numerical methods
and techniques have been carried out for I' = 3 and Re = 3200 (Deville
et al., 1992) for which the flow is time-dependent and likely chaotic. At that
time the editors of Deville et al. (1992) stated:
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Fig. 38 Snapshot of
the vorticity field (color)
of the oscillatory flow at
Re = 8125 > 1818 = Rec,
bandpass filtered in the
range w/Re € [2.6,3.0].
The lid at the top moves
to the left and the vortex

street travels counter- ; il
clockwise (courtesy F. X /’
Auteri, see Auteri et al., \‘ /
2002a). = - i

No definite conclusions about the benchmark solutions can be drawn. Indeed,
because of the intricate nature of the time and space behaviours, more work
remains to be done ...

This clearly rises the question for the flow properties at higher Reynolds
numbers at which the three-dimensional flow becomes chaotic and, eventu-
ally, turbulent. The transition scenario for three-dimensional flows is quite
different from the scenario in flows restricted to two dimensions.

9.1 Two-Dimensional Flow

It is well established that the flow in a cavity restricted to two dimensions
becomes time dependent via a Hopf bifurcation near Re a~ 8000 (Sec. 5.1).
Owing to the relatively high Reynolds number and the thin boundary layers
associated with it, the correct determination of the onset of oscillations re-
quires a very accurate numerical modeling. Therefore, results on the critical
data are scattered. If not mentioned otherwise the following results have been
obtained for I' = 1.

The two-dimensional time-dependent critical mode and the slightly super-
critical flow arises in form of a vortex street traveling in streamwise direction
within a thin layer between the main vortex and the three separated vortices
which are characteristic for the basic flow at high Re. A snapshot of the fil-
tered vorticity field (Auteri et al., 2002a) is shown in fig. 38. The vorticity
oscillations are relatively weak on the downstream stationary wall and grow
to appreciable amplitude only near the bottom wall, being further enhanced
along the wall upstream of the moving lid. Along the moving lid the vortices
are stretched and damped before being again injected as perturbations in
the boundary layer on the downstream wall. This structure of the slightly
supercritical flow has been confirmed by other authors and it was also found
in a proper orthogonal decomposition of the flow by Cazemier et al. (1998).
Recently, Nuriev et al. (2016) computed the linear stability boundary Re.
of the steady basic flow with a resolution of 5122. The extrapolated criti-
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Fig. 39 Qualitative bifurcation diagram (adapted from Tiesinga et al., 2002).

cal Reynolds number Re, = 8051 and the oscillation frequency on the finest
mesh w/Re = 2.79 are in good agreement with results of Fortin et al. (1997)
and Sahin and Owens (2003). Hopf bifurcations of the two-dimensional flow
have also been found for deep single-lid-driven cavities with I" = 1.5 and 2
(Boppana and Gajjar, 2010).

After the first Hopf bifurcation at Re., a second Hopf bifurcation was re-
ported by Auteri et al. (2002a), Bruneau and Saad (2006) and Peng et al.
(2003) to bifurcate from the basic flow at higher Reynolds numbers for I" = 1.
The second bifurcation was found to arise near Re ~ 10%, a Reynolds num-
ber at which additional incommensurate frequencies appear in nonlinear flow
simulations. However, the frequencies found by the above authors scatter, so
that no definitive conclusion can be drawn to date. Tiesinga et al. (2002) car-
ried out a bifurcation analysis by computing the most dangerous eigenvalues.
They find a succession of Hopf bifurcations within a relatively narrow range of
Reynolds numbers and calculated the bifurcations by numerical simulations
as shown in fig. 39. Further Hopf bifurcations arise for Reynolds numbers less
than Re = 11000, at which Verstappen et al. (1993), however, found the flow
still to be periodic.

The results of Tiesinga et al. (2002) (fig. 39) suggest that, in a certain range
of Re, different oscillatory flows are stable. Cazemier et al. (1998) also found
multiple Hopf bifurcations and investigated their stability using Floquet the-
ory. Transitions between flows with one and two frequencies were found as
well as indications for subharmonic response. This is qualitatively similar
to the results of Peng et al. (2003) who simulated the two-dimensional flow
for Reynolds numbers around Re = 10* using the marker-and-cell method
(Harlow and Welsh, 1965) on a uniform grid with resolution 100%. Varying
the Reynolds number Re in small steps, the authors find a supercritical Hof
bifurcation at Re ~ 7400. The very low value is due to the moderate reso-
lution used. At criticality, the bifurcating flow has a fundamental frequency
w1/Re =~ 3.7, roughly consistent with results from other investigations of the
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first instability. Near Re = 10300 Peng et al. (2003) found a succession of
flows which are quasi-periodic, subharmonic with a fundamental frequency
wy clearly different from wy, harmonic response, and again subharmonic flow,
before the flow turns chaotic. The authors conclude that two oscillatory so-
lution branches exist, belonging to the two fundamental frequencies, because
hysteresis was observed upon varying Re. The subharmonic flow may seem to
suggest the existence of a Feigenbaum sequence (Eckmann, 1981), however,
no further indications of this scenario were provided.

In his simulation for Re = 10* Bruneau (2007) found two other frequencies
wa,3 which are commensurate to the main frequency wy/Re = 3.8 of the first
bifurcation. Similar indications were also detected by Auteri et al. (2002a)
and Peng et al. (2003), but owing to the delicacy of the results no definitive
conclusion can be drawn, presently. Apart from the oscillatory solution bi-
furcating from the basic flow at the first critical point, Nuriev et al. (2016)
also computed other nonlinear flows and detected several new steady solu-
tions of the two-dimensional lid-driven cavity flow. All these latter solution
are created by fold bifurcations at Re ~ 5800, 6360, 14190 and 15270, and
all bifurcating solutions were found to be unstable. Nevertheless, it is ex-
pected that these unstable solutions play an important role in the dynamical
behavior of the system.

When the Reynolds number is increased to Re = 22000 the flow is chaotic.
Verstappen et al. (1993) found the correlation dimension of the chaotic at-
tractor to be approximately 2.8 and a Kolmogorov entropy K =~ 3. The un-
derlying coherent flow structures have been investigated by Cazemier et al.
(1998) using POD. For an even larger Reynolds number of Re = 10° Bruneau
(2007) also finds evidence for the existence of a chaotic attractor. This con-
clusion was drawn based on different initial conditions evolving to the same
statistical state for long times, a conclusion also supported by Garcia (2007).
Figure 40 shows snapshots of the vorticity field for Re = 10°.

9.2 Three-Dimensional Flow

A detailed view of the first steps towards transition to chaos and turbulence
in three dimensions has only recently emerged for the one-sided lid-driven
flow in a cube (A = I' = 1) (Sec. 7.2). Two subcritical instabilities near
Re =~ 2000 lead to a complicated dynamics characterized by intermittency
caused by the unstable basic state and two unstable limit cycles.

Observing the lateral dispersion of dye streaks, Koseff and Street (1984a)
experimentally found the flow in a cavity with A = 3 to become turbulent at
Re = 6000 to 8000. They also observed intermittent turbulent burst which
become frequent at Re = 10*. Nevertheless, the Taylor-Gortler vortices were
found to exist in the mean even at Re = 10%. From several investigations,
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Fig. 40 Vorticity isolines in a square cavity for Re = 10° (the lid is on top and
moves to the left). Shown are snapshots at ¢t = 10/Re (a) and at t = 200/ Re (b) after
initialization from rest. Results were obtained on 1024 x 1024 grid points by Bruneau
(2007).

the flow at Re = 10* may be called turbulent, because multiple scales are
involved in the flow dynamics.

A significant step forward in the simulation of turbulent cavity flows was
made by Leriche and Gavrilakis (2000). By direct numerical simulation (DNS)
they computed the flow in the cube (I" = A = 1) using a spectral Chebychev-
collocation method combined with a projection—diffusion method for the time
advancement (Leriche and Labrosse, 2000). The corner singularities along all
singular edges of the lid were regularized with a polynomial smoothing. This
reduces the mean driving velocity to & 85% of the original singular problem.
Therefore, a Reynolds number Re = UL/v = 12000 corresponds to a mean
Reynolds number Re,, = U,,L/v = 10200, where U,, is the mean lid velocity.

The turbulence was found to be strongly inhomogeneous. With the decom-
position u = w+u’, where the over-bar denotes time averaging, the Reynolds
stresses uju’; were found to be very small below the moving lid. Furthermore,

the volume integral of the total kinetic energy (FEyin/Re? in our scaling) fluc-
tuates with a few percent about its mean value of ~ 0.055 with the mean of
the fluctuating kinetic energy being ~ 0.0045.

At the Reynolds number Re = 12000 considered the flow is turbulent
in part of the cavity with the mean amplitudes of the velocity fluctuations
and the mean fluctuating kinetic energy being of the order of a few per-
cent of the respective mean values of the total quantities. The mean flow is
symmetric with respect to the midplane z = 0 and has a three-dimensional
structure in the mean, similar as the one found for steady laminar flow at
lower Reynolds numbers. The main global circulation is characterized by a
sequence of wall jets as illustrated in fig. 41a. The mean streamwise velocity
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Fig. 41 (a) Isolines of (w? +v2)'/2 in the plane z = 0.2135. (b) Isolines of the mean
streamwise velocity u slightly below the moving wall at y = 0.4785. (c¢) Isolines of the
energy production term —2v’w’ - Vv in a plane y = —0.462 near the bottom of the
cavity; full (dashed) lines indicate positive (negative) values. The plus (+) indicates
the monitoring point used for conditional averaging. (d) Conditional averaged flow
field in the plane z = 0.3865 close to the downstream wall). The mean Reynolds
number is Re,, = 10200. All figures are adapted from Leriche and Gavrilakis (2000).

7 immediately below the moving wall has a clear maximum in the midplane
with slower regions in both cavity halves (fig. 41b). Therefore, the wall jet
on the downstream wall is thicker away from the midplane z = 0 result-
ing in two elliptical wall jets (Bouffanais et al., 2007; Habisreutinger et al.,
2007). The impingement on y = —0.5 of the wall jet along the downstream



62 Hendrik C. Kuhlmann and Francesco Romano

(b)

Fig. 42 Isolines of the r.m.s. values of fluctuating velocity components for Re =
12000 in the midplane z = 0 obtained by a spectral-element DNS. (a) (u/2)'/2 and

(b) (v/2)1/2. The arrow indicates the lid motion. Adapted from Bouffanais et al.
(2007).

wall at © = 0.5 generates fluctuations v’. The dominant term of the energy
production, contributing the most to —2v'u’ - Vo (fig. 41c¢), was found to be

—20'%(00/0y). This term has a well defined maximum close to the bottom
wall at y = —0.5. The time history of this production term measured in
the point marked with a plus in fig. 41c shows very sharp peaks (not shown)
which are associated with important turbulence-generating events. This point
is exactly located at the border between the mean main circulation and the
mean separated downstream corner vortex (Bouffanais et al., 2007). Setting

a threshold —v/*(9v/0y) = 0.4Re® (in our scaling), which is about 50% of
the average peak height of this production term, and conditionally averaging
the flow only when this threshold is exceeded, reveals a particular mean flow
during these events which is shown in fig. 41d. Apparently, the turbulence
generating events are associated with a pair of vortices in each cavity half
which are located close to the bottom wall (y = —0.5) near the impingement
point of the wall jet on the downstream wall. Leriche and Gavrilakis (2000)
noted that these pairs of vortices are very similar to vortices caused by the
instability of the stagnation point flow on a bluff body (Kerstin and Wood,
1970; Gortler, 1955).

The distribution of the root-mean-square values of the fluctuating velocity
fields v" and v’ in the midplane z = 0 are shown in fig. 42. It is clearly seen that
the fluctuations are strong in the vicinity of the two separated vortices in both
bottom corners. The fluctuations are due to the impingement of the sequence
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Fig. 43 Isosurface of
5 = 202 (uju) /00,
for Re = 12000 corre-
sponding to 1% of its
maximum value. The
arrow indicates the lid
motion. Adapted from a
spectral-element LES of
Bouffanais et al. (2007)
using a dynamic mixed
model (LES-DMM).

of wall jets on the respective downstream walls. This is also confirmed in fig.
43 which shows, for Re = 12000, an isosurface of § := 282(u;u3) /0x;0x;
which is a measure for the inhomogeneity of the turbulent flow (Bouffanais
et al., 2007). Figure 43 also shows the inhomogeneity being largest where
the wall jets impinge on the walls near the separated corner vortices and
even on the upstream side of the moving wall. The average turbulent energy
dissipation rate € exhibits a similar distribution (Bouffanais et al., 2007, not
shown).

The relatively low Reynolds number for which simulations have been car-
ried out make a deduction of scaling laws for spectra of energy and other
quantities difficult. This difficulty is exacerbated by the non-homogeneous
nature of the turbulent flow in which the core of the vortex remains laminar
at Re = 12000 and by the limited record length of the signals. Nevertheless, a
K41 scaling seems to emerge (Jordan and Ragab, 1994; Deshpande and Mil-
ton, 1998) as shown in fig. 44 for the power spectral density of the velocity
measured in the impingement region of the downstream wall jets, where the
mean turbulence production attains its maximum value.

The results for Re = 12000 have been extended by Patel et al. (2013)
and Patel et al. (2014) to the case when two facing walls move in opposite
directions (as in fig. 1b). They carried out a large-eddy simulation (LES) using
the dynamic Smagorinsky model (for LES using the dynamic mixed model,
see Zang et al., 1993). Furthermore, Leriche (2006) extended the Reynolds
number range to Re = 22000 using a Chebyshev Gauss—Lobatto collocation
method for the cubic cavity. Other simulations are due to Verstappen et al.
(1994) for Re = 10* and Hossain et al. (2015) who simulated the lid-driven
flow in a cube for Re = 10* by a lattice Boltzmann method and by LES with
focus on the large scale vortical structures and their representation by POD.
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Fig. 44 At Re = 12000
the logarithm of the
power spectral density
(PSD) of the velocity field
recorded at (z,y,z) =
(0.3937, —0.4694, —0.16855)
tends to develop a scaling
~ f73/3 where f is

the frequency. Shown

are DNS (black) and
LES results (grey) ‘ ‘ ‘ ‘ ‘ ‘
(Courbebaisse et al., 0 05 ! 15 2 25 3
2011). log (frequency)

log (PSD(Velocity))

10 Extensions

The lid-driven cavity problem has been specialized, by numerous authors, to
take into account additional physical effects which modify the recirculating
vortex flow or which are affected by it. Since all these studies cannot be
treated comprehensively, this section is intended to give a brief overview of
the various topics which have been treated. For an in-depth consideration the
reader is referred to the original work.

Since the lid-driven cavity problem is a test bed for numerical methods,
it has been used to test a whole range of different numerical procedures.
Extending the classical global stability approach, Alizard et al. (2012) ap-
plied a matrix-free method for the global linear stability analysis to cavity
flows in multiple-connected subdomains. Several investigations have also been
devoted to the application of lattice-Boltzmann methods to the lid-driven-
cavity problem (Teixeira, 1997), also including the motion of suspended par-
ticles (Safdari and Kim, 2014). Since the lattice-Boltzmann method seems
to overpredict the critical Reynolds number for the onset of two-dimensional
flow oscillations (Lin et al., 2011), particular attention should be paid to the
implementation of the boundary conditions. Furthermore, Monte Carlo meth-
ods have been applied to micro-cavity flows (Eskandari and Nourazar, 2017)
and molecular dynamics (Kandemir and Kaya, 2012) as well as smoothed
particle hydrodynamics simulations (Khorasanizade and Sousa, 2014) have
been employed to compute lid-driven cavity flows.

Among the obvious parameters affecting the flow is the shape of the cav-
ity. Except for cuboidal shapes and variants thereof (Koseff et al., 1990; Zhou
et al., 2003; Gogoi, 2016), including stability analyses (de Vicente et al., 2011),
also triangular cavities have been investigated (Li and Tang, 1996; Erturk and
Gokcol, 2007; Pasquim and Mariani, 2008) and global linear stability anal-
yses have been carried out for periodic flow perturbations in cavities with a
triangular cross section (Gonzdlez et al., 2011; Ahmed and Kuhlmann, 2012).
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Other cavity shapes investigated range from polar or sectorial cavities (Ghia
and Goyal, 1977; Fuchs and Tillmark, 1985; Zang et al., 1994; Giircan and
Bilgil, 2013), trapezoidal cavities (Bhattacharya et al., 2013), flow and sta-
bility in circular cavities with part of the bounding circle moving (Gonzélez
et al., 2017), and cavities with an arc-shaped moving wall (Ismael, 2016).
Furthermore, toroidal cavity flows and their stability have found considera-
tion (Humphrey et al., 2001, 2003; Spasov et al., 2003) as well as cylindrical
cavities (Znaien et al., 2012). To the class of geometry effects also belongs
the effect of through flow between moving and stationary walls (Riedler and
Schneider, 1983). The through flow affects the structure and multiplicity of
three-dimensional flows and the transition to chaotic dynamics (Aidun et al.,
1991; Benson and Aidun, 1992). Apart from the two-sided cavity introduced
by Chien et al. (1986) for mixing studies and by Kuhlmann et al. (1997)
to study flow stability, also other wall-motion configuration with up to four
adjacent walls moving independently have been investigated (Beya and Lili,
2008; Wahba, 2009; Cadou et al., 2012), even though such cavity flows might
be difficult to realize experimentally. With relation to short-dwell coating
Giircan (2003) considered two-sided cavities in which the stationary walls are
replaced by stress-free surfaces (for Stokes flow see also Gaskell et al., 1998).
Yet other geometric complications can be introduced by cavities housing in-
terior bodies and/or partitioners (Oztop et al., 2009a,b; Billah et al., 2011).
Such baffled cavity geometries are of interest in mixing (Jana et al., 1994b)
(see Sec. 8). Stremler and Chen (2007) considered Stokes-flow mixing in a
cavity whose lid was sectioned into three parts on each of which the tangen-
tial velocity was piecewise constant, but time-dependent (see also McIlhany
et al., 2011), while Rao et al. (2012) investigated the two-dimensional mixing
in Stokes flow due to a time-dependent and spatially periodic wall motion in
cavities which are infinitely extended in direction of the wall motion.
Another fundamental extension to the classical lid-driven cavity concerns
the effect of thermal convection and heat transfer in addition to the mechan-
ical driving. Experiments have been carried out by Koseff and Street (1985)
for stratified lid-driven cavity flow, where the moving lid on top is heated and
the bottom wall is cooled, for Reynolds numbers ranging from 103 to 10* and
bulk Richardson numbers in the range of 0.08 to 6.5. Their investigation was
extended by Cohen et al. (2014) who experimentally studied the turbulent
flow under a stable thermal stratification in a nearly cubical lid-driven cavity.
For strong stratification the turbulence remaind confined to the moving lid
and large-scale internal gravity waves were observed in the regions outside
of the large-scale vortex. Two-dimensional numerical investigations of mixed
buoyancy-lid-driven flow in rectangular cavities are due to Torrance et al.
(1972); Iwatsu et al. (1993); Mohamad and Viskanta (1995) and, for slow
mixed convection, by Shankar and Nikiforovich (2002). Isaev et al. (2008)
investigated the transient behavior of the two-dimensional chaotic flow for
Re = 5 x 10* in a stably stratified square cavity using unsteady Reynolds-
averaged Navier—Stokes equations (URANS) which were closed by the shear
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stress transport model (SST). Mixed buoyancy convection was also studied
by Mohamad and Viskanta (1991), Mohamad and Viskanta (1995), Prasad
and Koseff (1996), Oztop and Dagtekin (2004), Khanafer et al. (2007) ,Bar-
letta and Nield (2009) and, in three dimensions, by Iwatsu and Hyun (1995).
Tiwari and Das (2007) put the focus on nanofluids and Chang and Cheng
(1999), Chen and Cheng (2003, 2004), Chen et al. (2012) and Cheng and
Chen (2005) studied the combined effect of mixed-convection heat transfer
and cavity shape, including a wavy bottom contour (Khanafer, 2014). The
combined effect of heat and mass transfer has been considered by Alleborn
et al. (1999) in the context of a continuous drying process.

The transient evolution of the cavity flow from rest (start-up) has been
studied by Tang et al. (1995), Guermond et al. (2002), Migeon (2002), Mi-
geon et al. (2003) and Akyuzlu (2017). Their work focused on the temporal
evolution of the flow, depending on the terminal Reynolds number. Cavities
with an oscillating floor have been investigated by Vogel et al. (2003), who
considered flow stability and supercritical flow regimes, among which a time-
periodic three-dimensional cellular flow was found to exist. Blackburn and
Lopez (2003) studied the flow stability in a cavity with an oscillating lid by
numerical simulation and Floquet theory. For an aspect ratio of I' = 0.5 they
found three-dimensional short- and longwave synchronous modes as well as
a non-synchronous mode which arises through a Neimark-Sacker bifurcation.
They continued their investigations with focus on symmetry breaking and
the relation of time-dependent cavity flows to periodic laminar vortex shed-
ding in two-dimensional wakes of symmetric bodies (Blackburn and Lopez,
2011). The effect of lid oscillations was also considered in combination with
heat transfer in rectangular (Chen and Cheng, 2009a) and triangular cavi-
ties (Chen and Cheng, 2009b). The two-dimensional time-dependent flow due
to harmonic anti-phase oscillations of two facing lids of a square cavity was
treated by Noor et al. (2009).

The lid-driven cavity flow is closely related to shear-driven flow in an open
cavity. If, in particular, the lid is replaced by a liquid—gas interface with high
surface tension, tangential temperature gradients can create significant shear
stresses on the interface by the thermocapillary effect (Scriven and Stern-
ling, 1960). Thus, keeping the walls at both ends of the interface at constant
temperatures the shear stress becomes constant in the limit of low Prandtl
numbers. Schimmel et al. (2005) has shown there exists a one-to-one rela-
tion between the four three-dimensional flow instabilities in the one-sided
lid-driven cavity (see fig. 13) and the ones in a cavity driven by a constant
shear stress. The two-dimensional variant of a shear-driven cavity was used
by Romand and Kuhlmann (2017) to study the motion of finite-size parti-
cles in the vicinity of the shear stress boundary. The situation becomes more
complicated when the surface tension is relaxed (weak) or when an interface
is absent. Such open cavities have been considered by many different authors,
among which Maull and East (1963), Rossiter (1964), and Rockwell and Nau-
dascher (1978) may be mentioned, to name only a few. Experimentally Neary
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and Stephanoff (1987) found three different flow regimes as a result of the
interaction of the shear layer, created by the oncoming flow, with the vor-
tex structures in the open cavity. Faure et al. (2007, 2009) visualized the
flow in open cavities and detected small scale (Gortler) vortices which were
traced back to a centrifugal flow instability. In compressible open cavities
Brés and Colonius (2008) found acoustic (Rossiter) as well as hydrodynamic
modes of three-dimensional instability by numerical simulation and stability
analysis. The flow stability in shear-driven (as opposed to lid-driven) cavi-
ties was also considered by Theofilis (2000), Theofilis and Colonius (2003),
de Vicente et al. (2014a,b) and by Liu et al. (2015). Further investigations
into the nonlinear regime by large eddy simulations (LES) have been carried
out by Larchevéque et al. (2004).

Another topic of interest is the motion of finite-size particles in driven
cavities. While the motion of suspensions of very small particles has received
some attention in the context of mixing (see, e.g., Xu and Gilchrist, 2010),
the motion of a few large particles has not received much attention. This is
certainly related to the difficulty of keeping larger particles suspended for
a sufficiently long time and the associated strict conditions on the density
matching between particles and the liquid. Nevertheless, Tsorng et al. (2006,
2008) found a curious particle motion in preferred regions of a lid-driven
cavity which they attributed to shear migration. Kuhlmann et al. (2016),
however, found large density-matched particles can be attracted on a very fast
time scale to periodic attractors in a steady three-dimensional cavity flow due
to a particle-boundary repulsion effect in conjunction with the topological
properties of the flow. The particle attraction in their system is too fast to
have been caused by particle inertia. Other investigations of particle motion
in cavities are due to Sidik and Attarzadeh (2011) and Kosinski et al. (2009).
Hafizi et al. (2015) considered the particle motion in a semi-elliptical cavity,
and Idris et al. (2012) studied the particle motion in triangular cavities. Since
long-time particle trajectories are difficult to compute due to the possibility
of error accumulation, it appears that more work is required to arrive at
a reliable prediction of the long-term motion of finite-size particles and to
better understand the mixing and segregation of those particles.

Among the many other directions to which the lid-driven cavity-flow prob-
lem can be extended is the effect of compressibility, in particular, for shear-
driven open cavities. Bergamo et al. (2015) have shown that compressibility
has a stabilizing effect on the two-dimensional instability of lid-driven cav-
ity flow. This was confirmed by Ohmichi and Suzuki (2017) who offered an
explanation for the stabilization in terms of baroclinic torque and vorticity
dilatation. Magnetohydrodynamic convection in lid-driven cavities includ-
ing heating has been considered by Chatterjee (2013), where the magnetic
field was oriented normal to the moving wall. Shatrov et al. (2003) inves-
tigated the three-dimensional instability of the lid-driven cavity flow in a
cavity with a square cross section when the magnetic field is aligned parallel
to the moving lid. Typically, the magnetic field suppresses the flow insta-
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bility, but several instability modes were found at Reynolds numbers of the
order of Re = O(3 x 103). Furthermore, different material laws are of interest.
Non-Newtonian cavity flows have been considered (Grillet et al., 1999), and
elastic instabilities in cavity flows were investigated (Pakdel and McKinley,
1996, 1998), Pakdel et al. (1997) and Grillet et al. (2000). Other investiga-
tions were devoted to viscoplastic flow (dos Santos et al., 2011) and nematic
polymers (Yang et al., 2010), the latter of which exhibit a sea of defects in
the orientation field. Also cavity flows of granular media have been subjects
of investigation. For instance, Kneib et al. (2017) used a discrete-element
method (DEM) to study force fluctuations on the walls. Finally, lid-driven
cavity flows have been studied in saturated porous media (Al-Amiri, 2000;
Oztop and Varol, 2009), also including a heated insert (Oztop, 2006).

Due to the multitude of publications the coverage of the above specialized
fields is far from comprehensive. The reader should also be aware of the
large body of literature on cavity flows of nanofluids and on cavity flows
which combine various forces such as mixed convection, inserts, internal heat
sources, non-Newtonian fluids and/or magnetohydrodynamic effects.

11 Conclusions and Perspectives

The lid-driven cavity problem provides a very rich multitude of fundamental
fluid mechanics. Owing to its popularity, also for numerical benchmarking, a
wealth of results has been obtained. Nevertheless, quite a number of questions
are left open and present challenges for future investigations.

The stability and transition scenario in confined systems is still a huge
challenge. In particular, the dependence of the flow on the spanwise con-
finement, given by the span aspect ratio A, is largely unexplored. Promising
approaches to the global stability analysis of three-dimensional flows in con-
fined geometries are due to Gémez et al. (2012) and Gémez et al. (2014),
who demonstrated the applicability of matrix-free methods to this class of
problems.

Another aspect which has recently received increasing attention is the
Lagrangian topology and the characterization of the flow kinematics. These
flow properties, along with chaotic and regular regions of the flow, determine
the mixing properties. Owing to the high accuracy required, corresponding
numerical computations are quite expensive for three-dimensional flows. Only
in recent years it has become possible to tackle the problem of streamline
topology in steady three-dimensional flows (Ishii et al., 2012; Romand et al.,
2017).

Related to Lagrangian flow structures, the dynamics of finite-size particles
is still an open problem. In confined geometries the particle-wall and particle—
particle interaction calls for an accurate treatment which can be extremely
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expensive computationally if fully resolving methods are employed (Romano
and Kuhlmann, 2016; Romano and Kuhlmann, 2017).

For both, to unravel the physics and to test computational techniques,
benchmarks are indispensable. As computing power grows and numerical
techniques develop, classical benchmarks such as the two-dimensional steady
cavity flow can only be a first step. Even if two-dimensional Hopf bifurcations
cannot be observed experimentally, because three-dimensional instabilities
arise at much lower Reynolds numbers, the sequence of Hopf bifurcations
in the two-dimensional lid-driven cavity (Sec. 9.1) provides an interesting
scenario of transition to turbulence. Therefore, an accurate prediction of two-
dimensional cavity flows at Re = O(10*), multiple solutions and bifurcation
points remain challenging tasks.

Another demanding test case for advanced numerical methods is the three-
dimensional flow in a lid-driven cube. It can be expected that many more
distinguished solutions of the Navier—Stokes equations exists for Re > 2000
which can be expected to be unstable, but affect the flow dynamics. Moreover,
for three-dimensional turbulent cavity flow at Re = 10* and higher, it would
be useful to define a general test case and observables of interest to be moni-
tored. Thus far, the few available investigations for Re = 12000 have yielded
an acceptable agreement between spectral and LES results (Bouffanais et al.,
2006).

Yet another candidate for benchmarking is the streamline topology in
three-dimensional flows. A well-suited test case seems be the steady flow
in a cube at an intermediate Reynolds number, say Re = 300, for which
the locations and periods of closed streamlines could be compared among
different numerical approaches.

Finally, previous investigations have shown that the accuracy of numeri-
cal calculations of the lid-driven cavity flow clearly benefits from a dedicated
treatment of the inherent singularities, e.g. by use of the singularity subtrac-
tion method (Botella and Peyret, 1998). Therefore, it can be recommended
for future investigations to make use of one of the approaches described to
handle the discontinuities of the boundary conditions. Based on the above
considerations, it can be expected that the lid-driven cavity problem will re-
main an important paradigmatic system for fluid mechanics research and for
numerical fluid mechanics, in particular, in the foreseeable future.
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